The columns in the database table are represented by model fields. Each field has a type, which matches the type of the corresponding database column. All the supported fields types are listed [here](field_types.md).
A model must have an `engine`, which determines how its table is stored on disk (if at all), and what capabilities it has. For more details about table engines see [here](table_engines.md).
### Default values
Each field has a "natural" default value - empty string for string fields, zero for numeric fields etc. To specify a different value use the `default` parameter:
An alias field is a field whose value is calculated by ClickHouse on the fly, as a function of other fields. It is not physically stored by the database. For example:
When values are assigned to model fields, they are immediately converted to their Pythonic data type. In case the value is invalid, a `ValueError` is raised:
This automatically connects to <http://localhost:8123> and creates a database called my_test_db, unless it already exists. If necessary, you can specify a different database URL and optional credentials:
db = Database('my_test_db', db_url='http://192.168.1.1:8050', username='scott', password='tiger')
Using the `Database` instance you can create a table for your model, and insert instances to it:
db.create_table(Person)
db.insert([dan, suzy])
The `insert` method can take any iterable of model instances, but they all must belong to the same model class.
Creating a read-only database is also supported. Such a `Database` instance can only read data, and cannot modify data or schemas:
db = Database('my_test_db', readonly=True)
Reading from the Database
-------------------------
Loading model instances from the database is simple:
for person in db.select("SELECT * FROM my_test_db.person", model_class=Person):
See [Querysets](querysets.md) for more information.
Reading without a Model
-----------------------
When running a query, specifying a model class is not required. In case you do not provide a model class, an ad-hoc class will be defined based on the column names and types returned by the query:
for row in db.select("SELECT max(height) as max_height FROM my_test_db.person"):
This is a very convenient feature that saves you the need to define a model for each query, while still letting you work with Pythonic column values and an elegant syntax.
It is also possible to generate a model class on the fly for an existing table in the database using `get_model_for_table`. This is particularly useful for querying system tables, for example:
There are a couple of special placeholders that you can use inside the SQL to make it easier to write: `$db` and `$table`. The first one is replaced by the database name, and the second is replaced by the table name (but is available only when the model is specified).
Note: normally it is not necessary to specify the database name, since it's already sent in the query parameters to ClickHouse. It is enough to specify the table name.
Note that `order_by` must be chosen so that the ordering is unique, otherwise there might be inconsistencies in the pagination (such as an instance that appears on two different pages).