A Python library for working with the ClickHouse database (https://clickhouse.yandex/)
Go to file
Itai Shirav 2e586fa61c Merge branch 'develop' into funcs
# Conflicts:
#	tests/test_database.py
2020-04-14 23:04:14 +03:00
docs Functions WIP 2020-04-14 23:03:11 +03:00
scripts Improve docs 2020-02-08 18:14:50 +02:00
src/infi Functions WIP 2020-04-14 23:03:11 +03:00
tests Merge branch 'develop' into funcs 2020-04-14 23:04:14 +03:00
.gitignore cross-version testing with tox 2018-04-21 11:48:32 +03:00
.noseids Merge branch 'develop' into funcs 2019-07-13 11:51:10 +03:00
buildout.cfg Remove usage of six 2019-12-15 19:14:16 +02:00
CHANGELOG.md Releasing v1.3.0 2020-02-07 14:58:42 +02:00
LICENSE HOSTDEV-2736 change license and add license file 2017-06-18 12:35:33 +03:00
README.md Update example in README 2017-08-14 12:17:38 +03:00
setup.in HOSTDEV-2736 change license and add license file 2017-06-18 12:35:33 +03:00
tox.ini add instructions to test with tox 2018-04-21 11:49:14 +03:00

Introduction

This project is simple ORM for working with the ClickHouse database. It allows you to define model classes whose instances can be written to the database and read from it.

Let's jump right in with a simple example of monitoring CPU usage. First we need to define the model class, connect to the database and create a table for the model:

from infi.clickhouse_orm.database import Database
from infi.clickhouse_orm.models import Model
from infi.clickhouse_orm.fields import *
from infi.clickhouse_orm.engines import Memory

class CPUStats(Model):

    timestamp = DateTimeField()
    cpu_id = UInt16Field()
    cpu_percent = Float32Field()

    engine = Memory()

db = Database('demo')
db.create_table(CPUStats)

Now we can collect usage statistics per CPU, and write them to the database:

import psutil, time, datetime

psutil.cpu_percent(percpu=True) # first sample should be discarded
while True:
    time.sleep(1)
    stats = psutil.cpu_percent(percpu=True)
    timestamp = datetime.datetime.now()
    db.insert([
        CPUStats(timestamp=timestamp, cpu_id=cpu_id, cpu_percent=cpu_percent)
        for cpu_id, cpu_percent in enumerate(stats)
    ])

Querying the table is easy, using either the query builder or raw SQL:

# Calculate what percentage of the time CPU 1 was over 95% busy
total = CPUStats.objects_in(db).filter(cpu_id=1).count()
busy = CPUStats.objects_in(db).filter(cpu_id=1, cpu_percent__gt=95).count()
print 'CPU 1 was busy {:.2f}% of the time'.format(busy * 100.0 / total)

# Calculate the average usage per CPU
for row in CPUStats.objects_in(db).aggregate('cpu_id', average='avg(cpu_percent)'):
    print 'CPU {row.cpu_id}: {row.average:.2f}%'.format(row=row)

To learn more please visit the documentation.