mirror of
https://github.com/Infinidat/infi.clickhouse_orm.git
synced 2024-11-22 00:56:34 +03:00
A Python library for working with the ClickHouse database (https://clickhouse.yandex/)
src/infi | ||
tests | ||
.gitignore | ||
buildout.cfg | ||
README.rst | ||
setup.in |
Overview ======== This project is simple ORM for working with the `ClickHouse database <https://clickhouse.yandex/>`_. It allows you to define model classes whose instances can be written to the database and read from it. Installation ============ To install infi.clickhouse_orm:: pip install infi.clickhouse_orm Usage ===== Defining Models --------------- Models are defined in a way reminiscent of Django's ORM: .. code:: python from infi.clickhouse_orm import models, fields, engines class Person(models.Model): first_name = fields.StringField() last_name = fields.StringField() birthday = fields.DateField() height = fields.Float32Field() engine = engines.MergeTree('birthday', ('first_name', 'last_name', 'birthday')) It is possible to provide a default value for a field, instead of its "natural" default (empty string for string fields, zero for numeric fields etc.). See below for the supported field types and table engines. Using Models ------------ Once you have a model, you can create model instances: .. code:: python >>> dan = Person(first_name='Dan', last_name='Schwartz') >>> suzy = Person(first_name='Suzy', last_name='Jones') >>> dan.first_name u'Dan' When values are assigned to model fields, they are immediately converted to their Pythonic data type. In case the value is invalid, a ``ValueError`` is raised: .. code:: python >>> suzy.birthday = '1980-01-17' >>> suzy.birthday datetime.date(1980, 1, 17) >>> suzy.birthday = 0.5 ValueError: Invalid value for DateField - 0.5 >>> suzy.birthday = '1922-05-31' ValueError: DateField out of range - 1922-05-31 is not between 1970-01-01 and 2038-01-19 Inserting to the Database ------------------------- To write your instances to ClickHouse, you need a ``Database`` instance: .. code:: python from infi.clickhouse_orm.database import Database db = Database('my_test_db') This automatically connects to http://localhost:8123 and creates a database called my_test_db, unless it already exists. If necessary, you can specify a different database URL and optional credentials: .. code:: python db = Database('my_test_db', db_url='http://192.168.1.1:8050', username='scott', password='tiger') Using the ``Database`` instance you can create a table for your model, and insert instances to it: .. code:: python db.create_table(Person) db.insert([dan, suzy]) The ``insert`` method can take any iterable of model instances, but they all must belong to the same model class. Reading from the Database ------------------------- Loading model instances from the database is simple: .. code:: python for person in db.select("SELECT * FROM my_test_db.person", model_class=Person): print person.first_name, person.last_name Do not include a ``FORMAT`` clause in the query, since the ORM automatically sets the format to ``TabSeparatedWithNamesAndTypes``. It is possible to select only a subset of the columns, and the rest will receive their default values: .. code:: python for person in db.select("SELECT first_name FROM my_test_db.person WHERE last_name='Smith'", model_class=Person): print person.first_name Specifying a model class is not required. In case you do not provide a model class, an ad-hoc class will be defined based on the column names and types returned by the query: .. code:: python for row in db.select("SELECT max(height) as max_height FROM my_test_db.person"): print row.max_height Counting -------- The ``Database`` class also supports counting records easily: .. code:: python >>> db.count(Person) 117 >>> db.count(Person, conditions="height > 1.90") 6 Field Types ----------- Currently the following field types are supported: ============= ======== ================= =================================================== Class DB Type Pythonic Type Comments ============= ======== ================= =================================================== StringField String unicode Encoded as UTF-8 when written to ClickHouse DateField Date datetime.date Range 1970-01-01 to 2038-01-19 DateTimeField DateTime datetime.datetime Minimal value is 1970-01-01 00:00:00; Always in UTC Int8Field Int8 int Range -128 to 127 Int16Field Int16 int Range -32,768 to 32,767 Int32Field Int32 int Range -2147483648 to 2147483647 Int64Field Int64 int/long Range -9223372036854775808 to 9223372036854775807 UInt8Field UInt8 int Range 0 to 255 UInt16Field UInt16 int Range 0 to 65535 UInt32Field UInt32 int Range 0 to 4294967295 UInt64Field UInt64 int/long Range 0 to 18446744073709551615 Float32Field Float32 float Float64Field Float64 float ============= ======== ================= =================================================== Table Engines ------------- Each model must have an engine instance, used when creating the table in ClickHouse. To define a ``MergeTree`` engine, supply the date column name and the names (or expressions) for the key columns: .. code:: python engine = engines.MergeTree('EventDate', ('CounterID', 'EventDate')) You may also provide a sampling expression: .. code:: python engine = engines.MergeTree('EventDate', ('CounterID', 'EventDate'), sampling_expr='intHash32(UserID)') A ``CollapsingMergeTree`` engine is defined in a similar manner, but requires also a sign column: .. code:: python engine = engines.CollapsingMergeTree('EventDate', ('CounterID', 'EventDate'), 'Sign') For a ``SummingMergeTree`` you can optionally specify the summing columns: .. code:: python engine = engines.SummingMergeTree('EventDate', ('OrderID', 'EventDate', 'BannerID'), summing_cols=('Shows', 'Clicks', 'Cost')) Any of the above engines can be converted to a replicated engine (e.g. ``ReplicatedMergeTree``) by adding two parameters, ``replica_table_path`` and ``replica_name``: .. code:: python engine = engines.MergeTree('EventDate', ('CounterID', 'EventDate'), replica_table_path='/clickhouse/tables/{layer}-{shard}/hits', replica_name='{replica}') Development =========== After cloning the project, run the following commands:: easy_install -U infi.projector cd infi.clickhouse_orm projector devenv build To run the tests, ensure that the ClickHouse server is running on http://localhost:8123/ (this is the default), and run:: bin/nosetests