A Python library for working with the ClickHouse database (https://clickhouse.yandex/)
Go to file
2021-08-08 10:11:55 +01:00
.github/workflows Update python-package.yml 2021-08-06 18:41:52 +00:00
clickhouse_orm Enhancement: add timezones to all date functions 2021-08-08 10:11:21 +01:00
docs Chore: remove intermediate dirs 2021-07-27 22:43:54 +01:00
examples Chore: remove intermediate dirs 2021-07-27 22:43:54 +01:00
scripts Chore: remove intermediate dirs 2021-07-27 22:43:54 +01:00
tests Bugfix: remove compression from alias fields 2021-08-06 17:10:42 +01:00
.gitignore Tooling: use poetry 2021-07-27 22:28:50 +01:00
CHANGELOG.md Update changelog 2021-08-08 10:11:55 +01:00
LICENSE Chore: license tweak 2021-07-28 22:50:11 +01:00
pyproject.toml Prepare 2.2.0 release 2021-08-06 18:57:52 +00:00
README.md Update README.md 2021-08-06 18:41:17 +00:00
setup.cfg Tooling: use poetry 2021-07-27 22:28:50 +01:00

A fork of infi.clikchouse_orm aimed at more frequent maintenance and bugfixes.

Tests

Introduction

This project is simple ORM for working with the ClickHouse database. It allows you to define model classes whose instances can be written to the database and read from it.

Let's jump right in with a simple example of monitoring CPU usage. First we need to define the model class, connect to the database and create a table for the model:

from clickhouse_orm import Database, Model, DateTimeField, UInt16Field, Float32Field, Memory, F

class CPUStats(Model):

    timestamp = DateTimeField()
    cpu_id = UInt16Field()
    cpu_percent = Float32Field()

    engine = Memory()

db = Database('demo')
db.create_table(CPUStats)

Now we can collect usage statistics per CPU, and write them to the database:

import psutil, time, datetime

psutil.cpu_percent(percpu=True) # first sample should be discarded
while True:
    time.sleep(1)
    stats = psutil.cpu_percent(percpu=True)
    timestamp = datetime.datetime.now()
    db.insert([
        CPUStats(timestamp=timestamp, cpu_id=cpu_id, cpu_percent=cpu_percent)
        for cpu_id, cpu_percent in enumerate(stats)
    ])

Querying the table is easy, using either the query builder or raw SQL:

# Calculate what percentage of the time CPU 1 was over 95% busy
queryset = CPUStats.objects_in(db)
total = queryset.filter(CPUStats.cpu_id == 1).count()
busy = queryset.filter(CPUStats.cpu_id == 1, CPUStats.cpu_percent > 95).count()
print('CPU 1 was busy {:.2f}% of the time'.format(busy * 100.0 / total))

# Calculate the average usage per CPU
for row in queryset.aggregate(CPUStats.cpu_id, average=F.avg(CPUStats.cpu_percent)):
    print('CPU {row.cpu_id}: {row.average:.2f}%'.format(row=row))

This and other examples can be found in the examples folder.

To learn more please visit the documentation.