import csv import enum import warnings class Usability(enum.Enum): UNKNOWN = 0 USER = 1 BOT = 2 BOTH = 4 class MethodInfo: def __init__(self, name, usability, errors, friendly): self.name = name self.errors = errors self.friendly = friendly try: self.usability = { 'unknown': Usability.UNKNOWN, 'user': Usability.USER, 'bot': Usability.BOT, 'both': Usability.BOTH, }[usability.lower()] except KeyError: raise ValueError('Usability must be either user, bot, both or ' 'unknown, not {}'.format(usability)) from None def parse_methods(csv_file, friendly_csv_file, errors_dict): """ Parses the input CSV file with columns (method, usability, errors) and yields `MethodInfo` instances as a result. """ raw_to_friendly = {} with friendly_csv_file.open(newline='') as f: f = csv.reader(f) next(f, None) # header for ns, friendly, raw_list in f: for raw in raw_list.split(): raw_to_friendly[raw] = (ns, friendly) with csv_file.open(newline='') as f: f = csv.reader(f) next(f, None) # header for line, (method, usability, errors) in enumerate(f, start=2): try: errors = [errors_dict[x] for x in errors.split()] except KeyError: raise ValueError('Method {} references unknown errors {}' .format(method, errors)) from None friendly = raw_to_friendly.pop(method, None) yield MethodInfo(method, usability, errors, friendly) if raw_to_friendly: warnings.warn('note: unknown raw methods in friendly mapping: {}' .format(', '.join(raw_to_friendly)))