mirror of
				https://github.com/LonamiWebs/Telethon.git
				synced 2025-11-04 09:57:29 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			68 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						|
This module holds a fast Factorization class.
 | 
						|
"""
 | 
						|
from random import randint
 | 
						|
 | 
						|
 | 
						|
class Factorization:
 | 
						|
    """
 | 
						|
    Simple module to factorize large numbers really quickly.
 | 
						|
    """
 | 
						|
    @classmethod
 | 
						|
    def factorize(cls, pq):
 | 
						|
        """
 | 
						|
        Factorizes the given large integer.
 | 
						|
 | 
						|
        Implementation from https://comeoncodeon.wordpress.com/2010/09/18/pollard-rho-brent-integer-factorization/.
 | 
						|
 | 
						|
        :param pq: the prime pair pq.
 | 
						|
        :return: a tuple containing the two factors p and q.
 | 
						|
        """
 | 
						|
        if pq % 2 == 0:
 | 
						|
            return 2, pq // 2
 | 
						|
 | 
						|
        y, c, m = randint(1, pq - 1), randint(1, pq - 1), randint(1, pq - 1)
 | 
						|
        g = r = q = 1
 | 
						|
        x = ys = 0
 | 
						|
 | 
						|
        while g == 1:
 | 
						|
            x = y
 | 
						|
            for i in range(r):
 | 
						|
                y = (pow(y, 2, pq) + c) % pq
 | 
						|
 | 
						|
            k = 0
 | 
						|
            while k < r and g == 1:
 | 
						|
                ys = y
 | 
						|
                for i in range(min(m, r - k)):
 | 
						|
                    y = (pow(y, 2, pq) + c) % pq
 | 
						|
                    q = q * (abs(x - y)) % pq
 | 
						|
 | 
						|
                g = cls.gcd(q, pq)
 | 
						|
                k += m
 | 
						|
 | 
						|
            r *= 2
 | 
						|
 | 
						|
        if g == pq:
 | 
						|
            while True:
 | 
						|
                ys = (pow(ys, 2, pq) + c) % pq
 | 
						|
                g = cls.gcd(abs(x - ys), pq)
 | 
						|
                if g > 1:
 | 
						|
                    break
 | 
						|
 | 
						|
        p, q = g, pq // g
 | 
						|
        return (p, q) if p < q else (q, p)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def gcd(a, b):
 | 
						|
        """
 | 
						|
        Calculates the Greatest Common Divisor.
 | 
						|
 | 
						|
        :param a: the first number.
 | 
						|
        :param b: the second number.
 | 
						|
        :return: GCD(a, b)
 | 
						|
        """
 | 
						|
        while b:
 | 
						|
            a, b = b, a % b
 | 
						|
 | 
						|
        return a
 |