Serializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into `JSON`, `XML` or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.
The serializers in REST framework work very similarly to Django's `Form` and `ModelForm` classes. We provide a `Serializer` class which gives you a powerful, generic way to control the output of your responses, as well as a `ModelSerializer` class which provides a useful shortcut for creating serializers that deal with model instances and querysets.
We can now use `CommentSerializer` to serialize a comment, or list of comments. Again, using the `Serializer` class looks a lot like using a `Form` class.
If we want to be able to return complete object instances based on the validated data we need to implement one or both of the `.create()` and `.update()` methods. For example:
If your object instances correspond to Django models you'll also want to ensure that these methods save the object to the database. For example, if `Comment` was a Django model, the methods might look like this:
Now when deserializing data, we can call `.save()` to return an object instance, based on the validated data.
comment = serializer.save()
Calling `.save()` will either create a new instance, or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:
Both the `.create()` and `.update()` methods are optional. You can implement either neither, one, or both of them, depending on the use-case for your serializer class.
Sometimes you'll want your view code to be able to inject additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or anything else that is not part of the request data.
You can do so by including additional keyword arguments when calling `.save()`. For example:
serializer.save(owner=request.user)
Any additional keyword arguments will be included in the `validated_data` argument when `.create()` or `.update()` are called.
#### Overriding `.save()` directly.
In some cases the `.create()` and `.update()` method names may not be meaningful. For example, in a contact form we may not be creating new instances, but instead sending an email or other message.
In these cases you might instead choose to override `.save()` directly, as being more readable and meaningful.
When deserializing data, you always need to call `is_valid()` before attempting to access the validated data, or save an object instance. If any validation errors occur, the `.errors` property will contain a dictionary representing the resulting error messages. For example:
Each key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The `non_field_errors` key may also be present, and will list any general validation errors. The name of the `non_field_errors` key may be customized using the `NON_FIELD_ERRORS_KEY` REST framework setting.
The `.is_valid()` method takes an optional `raise_exception` flag that will cause it to raise a `serializers.ValidationError` exception if there are validation errors.
These exceptions are automatically dealt with by the default exception handler that REST framework provides, and will return `HTTP 400 Bad Request` responses by default.
You can specify custom field-level validation by adding `.validate_<field_name>` methods to your `Serializer` subclass. These are similar to the `.clean_<field_name>` methods on Django forms.
**Note:** If your `<field_name>` is declared on your serializer with the parameter `required=False` then this validation step will not take place if the field is not included.
To do any other validation that requires access to multiple fields, add a method called `.validate()` to your `Serializer` subclass. This method takes a single argument, which is a dictionary of field values. It should raise a `serializers.ValidationError` if necessary, or just return the validated values. For example:
Serializer classes can also include reusable validators that are applied to the complete set of field data. These validators are included by declaring them on an inner `Meta` class, like so:
When passing an initial object or queryset to a serializer instance, the object will be made available as `.instance`. If no initial object is passed then the `.instance` attribute will be `None`.
When passing data to a serializer instance, the unmodified data will be made available as `.initial_data`. If the data keyword argument is not passed then the `.initial_data` attribute will not exist.
By default, serializers must be passed values for all required fields or they will raise validation errors. You can use the `partial` argument in order to allow partial updates.
The previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.
When dealing with nested representations that support deserializing the data, any errors with nested objects will be nested under the field name of the nested object.
For updates you'll want to think carefully about how to handle updates to relationships. For example if the data for the relationship is `None`, or not provided, which of the following should occur?
Because the behavior of nested creates and updates can be ambiguous, and may require complex dependencies between related models, REST framework 3 requires you to always write these methods explicitly. The default `ModelSerializer``.create()` and `.update()` methods do not include support for writable nested representations.
There are however, third-party packages available such as [DRF Writable Nested][thirdparty-writable-nested] that support automatic writable nested representations.
An alternative to saving multiple related instances in the serializer is to write custom model manager classes that handle creating the correct instances.
For example, suppose we wanted to ensure that `User` instances and `Profile` instances are always created together as a pair. We might write a custom manager class that looks something like this:
This manager class now more nicely encapsulates that user instances and profile instances are always created at the same time. Our `.create()` method on the serializer class can now be re-written to use the new manager method.
For more details on this approach see the Django documentation on [model managers][model-managers], and [this blogpost on using model and manager classes][encapsulation-blogpost].
The `Serializer` class can also handle serializing or deserializing lists of objects.
#### Serializing multiple objects
To serialize a queryset or list of objects instead of a single object instance, you should pass the `many=True` flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.
queryset = Book.objects.all()
serializer = BookSerializer(queryset, many=True)
serializer.data
# [
# {'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'},
# {'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'},
The default behavior for deserializing multiple objects is to support multiple object creation, but not support multiple object updates. For more information on how to support or customize either of these cases, see the [ListSerializer](#listserializer) documentation below.
There are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you're using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.
The context dictionary can be used within any serializer field logic, such as a custom `.to_representation()` method, by accessing the `self.context` attribute.
Often you'll want serializer classes that map closely to Django model definitions.
The `ModelSerializer` class provides a shortcut that lets you automatically create a `Serializer` class with fields that correspond to the Model fields.
**The `ModelSerializer` class is the same as a regular `Serializer` class, except that**:
* It will automatically generate a set of fields for you, based on the model.
* It will automatically generate validators for the serializer, such as unique_together validators.
* It includes simple default implementations of `.create()` and `.update()`.
Any relationships such as foreign keys on the model will be mapped to `PrimaryKeyRelatedField`. Reverse relationships are not included by default unless explicitly included as specified in the [serializer relations][relations] documentation.
Serializer classes generate helpful verbose representation strings, that allow you to fully inspect the state of their fields. This is particularly useful when working with `ModelSerializers` where you want to determine what set of fields and validators are being automatically created for you.
To do so, open the Django shell, using `python manage.py shell`, then import the serializer class, instantiate it, and print the object representation…
If you only want a subset of the default fields to be used in a model serializer, you can do so using `fields` or `exclude` options, just as you would with a `ModelForm`. It is strongly recommended that you explicitly set all fields that should be serialized using the `fields` attribute. This will make it less likely to result in unintentionally exposing data when your models change.
In the example above, if the `Account` model had 3 fields `account_name`, `users`, and `created`, this will result in the fields `account_name` and `created` to be serialized.
The `depth` option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.
You can add extra fields to a `ModelSerializer` or override the default fields by declaring fields on the class, just as you would for a `Serializer` class.
class AccountSerializer(serializers.ModelSerializer):
You may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the `read_only=True` attribute, you may use the shortcut Meta option, `read_only_fields`.
This option should be a list or tuple of field names, and is declared as follows:
Model fields which have `editable=False` set, and `AutoField` fields will be set to read-only by default, and do not need to be added to the `read_only_fields` option.
**Note**: There is a special-case where a read-only field is part of a `unique_together` constraint at the model level. In this case the field is required by the serializer class in order to validate the constraint, but should also not be editable by the user.
The right way to deal with this is to specify the field explicitly on the serializer, providing both the `read_only=True` and `default=…` keyword arguments.
One example of this is a read-only relation to the currently authenticated `User` which is `unique_together` with another identifier. In this case you would declare the user field like so:
user = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())
Please review the [Validators Documentation](/api-guide/validators/) for details on the [UniqueTogetherValidator](/api-guide/validators/#uniquetogethervalidator) and [CurrentUserDefault](/api-guide/validators/#currentuserdefault) classes.
There is also a shortcut allowing you to specify arbitrary additional keyword arguments on fields, using the `extra_kwargs` option. As in the case of `read_only_fields`, this means you do not need to explicitly declare the field on the serializer.
When serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for `ModelSerializer` is to use the primary keys of the related instances.
Alternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.
The ModelSerializer class also exposes an API that you can override in order to alter how serializer fields are automatically determined when instantiating the serializer.
Normally if a `ModelSerializer` does not generate the fields you need by default then you should either add them to the class explicitly, or simply use a regular `Serializer` class instead. However in some cases you may want to create a new base class that defines how the serializer fields are created for any given model.
A mapping of Django model classes to REST framework serializer classes. You can override this mapping to alter the default serializer classes that should be used for each model class.
The following methods are called to determine the class and keyword arguments for each field that should be automatically included on the serializer. Each of these methods should return a two tuple of `(field_class, field_kwargs)`.
The `HyperlinkedModelSerializer` class is similar to the `ModelSerializer` class except that it uses hyperlinks to represent relationships, rather than primary keys.
The url field will be represented using a `HyperlinkedIdentityField` serializer field, and any relationships on the model will be represented using a `HyperlinkedRelatedField` serializer field.
By default hyperlinks are expected to correspond to a view name that matches the style `'{model_name}-detail'`, and looks up the instance by a `pk` keyword argument.
You can override a URL field view name and lookup field by using either, or both of, the `view_name` and `lookup_field` options in the `extra_kwargs` setting, like so:
**Tip**: Properly matching together hyperlinked representations and your URL conf can sometimes be a bit fiddly. Printing the `repr` of a `HyperlinkedModelSerializer` instance is a particularly useful way to inspect exactly which view names and lookup fields the relationships are expected to map too.
The `ListSerializer` class provides the behavior for serializing and validating multiple objects at once. You won't *typically* need to use `ListSerializer` directly, but should instead simply pass `many=True` when instantiating a serializer.
When a serializer is instantiated and `many=True` is passed, a `ListSerializer` instance will be created. The serializer class then becomes a child of the parent `ListSerializer`
* You want to customize the create or update behavior of multiple objects.
For these cases you can modify the class that is used when `many=True` is passed, by using the `list_serializer_class` option on the serializer `Meta` class.
For example:
class CustomListSerializer(serializers.ListSerializer):
The default implementation for multiple object creation is to simply call `.create()` for each item in the list. If you want to customize this behavior, you'll need to customize the `.create()` method on `ListSerializer` class that is used when `many=True` is passed.
For example:
class BookListSerializer(serializers.ListSerializer):
By default the `ListSerializer` class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous.
To support multiple updates you'll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind:
* How do you determine which instance should be updated for each item in the list of data?
* How should insertions be handled? Are they invalid, or do they create new objects?
* How should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid?
You will need to add an explicit `id` field to the instance serializer. The default implicitly-generated `id` field is marked as `read_only`. This causes it to be removed on updates. Once you declare it explicitly, it will be available in the list serializer's `update` method.
It is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the `allow_add_remove` behavior that was present in REST framework 2.
When a serializer with `many=True` is instantiated, we need to determine which arguments and keyword arguments should be passed to the `.__init__()` method for both the child `Serializer` class, and for the parent `ListSerializer` class.
The default implementation is to pass all arguments to both classes, except for `validators`, and any custom keyword arguments, both of which are assumed to be intended for the child serializer class.
Occasionally you might need to explicitly specify how the child and parent classes should be instantiated when `many=True` is passed. You can do so by using the `many_init` class method.
Because this class provides the same interface as the `Serializer` class, you can use it with the existing generic class-based views exactly as you would for a regular `Serializer` or `ModelSerializer`.
The only difference you'll notice when doing so is the `BaseSerializer` classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.
To implement a read-only serializer using the `BaseSerializer` class, we just need to override the `.to_representation()` method. Let's take a look at an example using a simple Django model:
class HighScore(models.Model):
created = models.DateTimeField(auto_now_add=True)
player_name = models.CharField(max_length=10)
score = models.IntegerField()
It's simple to create a read-only serializer for converting `HighScore` instances into primitive data types.
class HighScoreSerializer(serializers.BaseSerializer):
To create a read-write serializer we first need to implement a `.to_internal_value()` method. This method returns the validated values that will be used to construct the object instance, and may raise a `serializers.ValidationError` if the supplied data is in an incorrect format.
Once you've implemented `.to_internal_value()`, the basic validation API will be available on the serializer, and you will be able to use `.is_valid()`, `.validated_data` and `.errors`.
If you want to also support `.save()` you'll need to also implement either or both of the `.create()` and `.update()` methods.
Here's a complete example of our previous `HighScoreSerializer`, that's been updated to support both read and write operations.
class HighScoreSerializer(serializers.BaseSerializer):
The `BaseSerializer` class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.
The following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.
class ObjectSerializer(serializers.BaseSerializer):
"""
A read-only serializer that coerces arbitrary complex objects
If you need to alter the serialization or deserialization behavior of a serializer class, you can do so by overriding the `.to_representation()` or `.to_internal_value()` methods.
Takes the object instance that requires serialization, and should return a primitive representation. Typically this means returning a structure of built-in Python datatypes. The exact types that can be handled will depend on the render classes you have configured for your API.
Takes the unvalidated incoming data as input and should return the validated data that will be made available as `serializer.validated_data`. The return value will also be passed to the `.create()` or `.update()` methods if `.save()` is called on the serializer class.
If any of the validation fails, then the method should raise a `serializers.ValidationError(errors)`. The `errors` argument should be a dictionary mapping field names (or `settings.NON_FIELD_ERRORS_KEY`) to a list of error messages. If you don't need to alter deserialization behavior and instead want to provide object-level validation, it's recommended that you instead override the [`.validate()`](#object-level-validation) method.
The `data` argument passed to this method will normally be the value of `request.data`, so the datatype it provides will depend on the parser classes you have configured for your API.
Similar to Django forms, you can extend and reuse serializers through inheritance. This allows you to declare a common set of fields or methods on a parent class that can then be used in a number of serializers. For example,
Like Django's `Model` and `ModelForm` classes, the inner `Meta` class on serializers does not implicitly inherit from it's parents' inner `Meta` classes. If you want the `Meta` class to inherit from a parent class you must do so explicitly. For example:
class AccountSerializer(MyBaseSerializer):
class Meta(MyBaseSerializer.Meta):
model = Account
Typically we would recommend *not* using inheritance on inner Meta classes, but instead declaring all options explicitly.
Additionally, the following caveats apply to serializer inheritance:
* Normal Python name resolution rules apply. If you have multiple base classes that declare a `Meta` inner class, only the first one will be used. This means the child’s `Meta`, if it exists, otherwise the `Meta` of the first parent, etc.
* It’s possible to declaratively remove a `Field` inherited from a parent class by setting the name to be `None` on the subclass.
class MyBaseSerializer(ModelSerializer):
my_field = serializers.CharField()
class MySerializer(MyBaseSerializer):
my_field = None
However, you can only use this technique to opt out from a field defined declaratively by a parent class; it won’t prevent the `ModelSerializer` from generating a default field. To opt-out from default fields, see [Specifying which fields to include](#specifying-which-fields-to-include).
Once a serializer has been initialized, the dictionary of fields that are set on the serializer may be accessed using the `.fields` attribute. Accessing and modifying this attribute allows you to dynamically modify the serializer.
Modifying the `fields` argument directly allows you to do interesting things such as changing the arguments on serializer fields at runtime, rather than at the point of declaring the serializer.
For example, if you wanted to be able to set which fields should be used by a serializer at the point of initializing it, you could create a serializer class like so:
class DynamicFieldsModelSerializer(serializers.ModelSerializer):
"""
A ModelSerializer that takes an additional `fields` argument that
controls which fields should be displayed.
"""
def __init__(self, *args, **kwargs):
# Don't pass the 'fields' arg up to the superclass
Because the serializers have been fundamentally redesigned with 3.0 this API no longer exists. You can still modify the fields that get created but you'll need to refer to the source code, and be aware that if the changes you make are against private bits of API then they may be subject to change.
The [django-rest-marshmallow][django-rest-marshmallow] package provides an alternative implementation for serializers, using the python [marshmallow][marshmallow] library. It exposes the same API as the REST framework serializers, and can be used as a drop-in replacement in some use-cases.
The [serpy][serpy] package is an alternative implementation for serializers that is built for speed. [Serpy][serpy] serializes complex datatypes to simple native types. The native types can be easily converted to JSON or any other format needed.
The [django-rest-framework-mongoengine][mongoengine] package provides a `MongoEngineModelSerializer` serializer class that supports using MongoDB as the storage layer for Django REST framework.
The [django-rest-framework-gis][django-rest-framework-gis] package provides a `GeoFeatureModelSerializer` serializer class that supports GeoJSON both for read and write operations.
The [django-rest-framework-hstore][django-rest-framework-hstore] package provides an `HStoreSerializer` to support [django-hstore][django-hstore] `DictionaryField` model field and its `schema-mode` feature.
The [dynamic-rest][dynamic-rest] package extends the ModelSerializer and ModelViewSet interfaces, adding API query parameters for filtering, sorting, and including / excluding all fields and relationships defined by your serializers.
The [drf-dynamic-fields][drf-dynamic-fields] package provides a mixin to dynamically limit the fields per serializer to a subset specified by an URL parameter.
The [drf-flex-fields][drf-flex-fields] package extends the ModelSerializer and ModelViewSet to provide commonly used functionality for dynamically setting fields and expanding primitive fields to nested models, both from URL parameters and your serializer class definitions.
The [html-json-forms][html-json-forms] package provides an algorithm and serializer for processing `<form>` submissions per the (inactive) [HTML JSON Form specification][json-form-spec]. The serializer facilitates processing of arbitrarily nested JSON structures within HTML. For example, `<input name="items[0][id]" value="5">` will be interpreted as `{"items": [{"id": "5"}]}`.
[djangorestframework-queryfields][djangorestframework-queryfields] allows API clients to specify which fields will be sent in the response via inclusion/exclusion query parameters.
The [drf-writable-nested][drf-writable-nested] package provides writable nested model serializer which allows to create/update models with nested related data.
The [drf-encrypt-content][drf-encrypt-content] package helps you encrypt your data, serialized through ModelSerializer. It also contains some helper functions. Which helps you to encrypt your data.