Format strings may either be Python strftime formats which explicitly specify the format, or the special string 'iso-8601', which indicates that ISO 8601 style datetimes should be used. (eg '2013-01-29T12:34:56.000000Z')
When a value of None is used for the format datetime objects will be returned by to_representation and the final output representation will determined by the renderer class.
In the case of JSON this means the default datetime representation uses the ECMA 262 date time string specification. This is a subset of ISO 8601 which uses millisecond precision, and includes the 'Z' suffix for the UTC timezone, for example: 2013-01-29T12:34:56.123Z.
When using ModelSerializer or HyperlinkedModelSerializer, note that any model fields with auto_now=True or auto_now_add=True will use serializer fields that are read_only=True by default.
If you want to override this behavior, you'll need to declare the DateTimeField explicitly on the serializer. For example:
class CommentSerializer(serializers.ModelSerializer):
@@ -949,7 +949,7 @@ class ColorField(serializers.Field):
return Color(red, green, blue)
By default field values are treated as mapping to an attribute on the object. If you need to customize how the field value is accessed and set you need to override .get_attribute() and/or .get_value().
-
As an example, let's create a field that can be used represent the class name of the object being serialized:
+
As an example, let's create a field that can be used to represent the class name of the object being serialized:
class ClassNameField(serializers.Field):
def get_attribute(self, obj):
# We pass the object instance onto `to_representation`,
diff --git a/api-guide/filtering/index.html b/api-guide/filtering/index.html
index 957b00f9c..c8ca93580 100644
--- a/api-guide/filtering/index.html
+++ b/api-guide/filtering/index.html
@@ -558,10 +558,10 @@ class UserListView(generics.ListAPIView):
To use REST framework's DjangoFilterBackend, first install django-filter.
pip install django-filter
-
If you are using the browsable API or admin API you may also want to install crispy-forms, which will enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML.
+
If you are using the browsable API or admin API you may also want to install django-crispy-forms, which will enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML.
pip install django-crispy-forms
-
With crispy forms installed, the browsable API will present a filtering control for DjangoFilterBackend, like so:
+
With crispy forms installed and added to Django's INSTALLED_APPS, the browsable API will present a filtering control for DjangoFilterBackend, like so:
If all you need is simple equality-based filtering, you can set a filter_fields attribute on the view, or viewset, listing the set of fields you wish to filter against.
diff --git a/api-guide/generic-views/index.html b/api-guide/generic-views/index.html
index b57a9843b..fc93211b0 100644
--- a/api-guide/generic-views/index.html
+++ b/api-guide/generic-views/index.html
@@ -510,14 +510,6 @@ class UserList(generics.ListCreateAPIView):
serializer_class = UserSerializer
permission_classes = (IsAdminUser,)
- def get_paginate_by(self):
- """
- Use smaller pagination for HTML representations.
- """
- if self.request.accepted_renderer.format == 'html':
- return 20
- return 100
-
def list(self, request):
# Note the use of `get_queryset()` instead of `self.queryset`
queryset = self.get_queryset()
@@ -602,15 +594,6 @@ class UserList(generics.ListCreateAPIView):
return FullAccountSerializer
return BasicAccountSerializer
Returns the page size to use with pagination. By default this uses the paginate_by attribute, and may be overridden by the client if the paginate_by_param attribute is set.
-
You may want to override this method to provide more complex behavior, such as modifying page sizes based on the media type of the response.
The built-in styles currently all use links included as part of the content of the response. This style is more accessible when using the browsable API.
Pagination is only performed automatically if you're using the generic views or viewsets. If you're using a regular APIView, you'll need to call into the pagination API yourself to ensure you return a paginated response. See the source code for the mixins.ListModelMixin and generics.GenericAPIView classes for an example.
+
Pagination can be turned off by setting the pagination class to None.
The default pagination style may be set globally, using the DEFAULT_PAGINATION_CLASS settings key. For example, to use the built-in limit/offset pagination, you would do:
REST_FRAMEWORK = {
@@ -500,6 +501,7 @@ class StandardResultsSetPagination(PageNumberPagination):
The PageNumberPagination class includes a number of attributes that may be overridden to modify the pagination style.
To set these attributes you should override the PageNumberPagination class, and then enable your custom pagination class as above.
+
django_paginator_class - The Django Paginator class to use. Default is django.core.paginator.Paginator, which should be fine for most usecases.
page_size - A numeric value indicating the page size. If set, this overrides the PAGE_SIZE setting. Defaults to the same value as the PAGE_SIZE settings key.
page_query_param - A string value indicating the name of the query parameter to use for the pagination control.
page_size_query_param - If set, this is a string value indicating the name of a query parameter that allows the client to set the page size on a per-request basis. Defaults to None, indicating that the client may not control the requested page size.
This renderer is suitable for CRUD-style web APIs that should also present a user-friendly interface for managing the data.
Note that views that have nested or list serializers for their input won't work well with the AdminRenderer, as the HTML forms are unable to properly support them.
+
Note: The AdminRenderer is only able to include links to detail pages when a properly configured URL_FIELD_NAME (url by default) attribute is present in the data. For HyperlinkedModelSerializer this will be the case, but for ModelSerializer or plain Serializer classes you'll need to make sure to include the field explicitly. For example here we use models get_absolute_url method:
+
class AccountSerializer(serializers.ModelSerializer):
+ url = serializers.CharField(source='get_absolute_url', read_only=True)
+
+ class Meta:
+ model = Account
+
.media_type: text/html
.format: '.admin'
.charset: utf-8
diff --git a/api-guide/serializers/index.html b/api-guide/serializers/index.html
index 9a2084b4b..a348fec09 100644
--- a/api-guide/serializers/index.html
+++ b/api-guide/serializers/index.html
@@ -1148,6 +1148,10 @@ class BookSerializer(serializers.Serializer):
return ret
class BookSerializer(serializers.Serializer):
+ # We need to identify elements in the list using their primary key,
+ # so use a writable field here, rather than the default which would be read-only.
+ id = serializers.IntegerField()
+
...
class Meta:
list_serializer_class = BookListSerializer
diff --git a/api-guide/versioning/index.html b/api-guide/versioning/index.html
index 7fea161ab..5be07d08f 100644
--- a/api-guide/versioning/index.html
+++ b/api-guide/versioning/index.html
@@ -504,12 +504,12 @@ Accept: application/json
Your URL conf must include a pattern that matches the version with a 'version' keyword argument, so that this information is available to the versioning scheme.
Note that the URL path can be whatever you want, but you must include 'rest_framework.urls' with the 'rest_framework' namespace.
+
Note that the URL path can be whatever you want, but you must include 'rest_framework.urls' with the 'rest_framework' namespace. You may leave out the namespace in Django 1.9+, and REST framework will set it for you.
Let's take a look at a quick example of using REST framework to build a simple model-backed API.
We'll create a read-write API for accessing information on the users of our project.
diff --git a/mkdocs/search_index.json b/mkdocs/search_index.json
index 938c9f84a..3aa2dea1a 100644
--- a/mkdocs/search_index.json
+++ b/mkdocs/search_index.json
@@ -2,17 +2,17 @@
"docs": [
{
"location": "/",
- "text": "Note\n: This is the documentation for the \nversion 3\n of REST framework. Documentation for \nversion 2\n is also available.\n\n\n\n\n\n\nDjango REST Framework\n\n\n\n\n\n\n\n\nDjango REST framework is a powerful and flexible toolkit for building Web APIs.\n\n\nSome reasons you might want to use REST framework:\n\n\n\n\nThe \nWeb browsable API\n is a huge usability win for your developers.\n\n\nAuthentication policies\n including packages for \nOAuth1a\n and \nOAuth2\n.\n\n\nSerialization\n that supports both \nORM\n and \nnon-ORM\n data sources.\n\n\nCustomizable all the way down - just use \nregular function-based views\n if you don't need the \nmore\n \npowerful\n \nfeatures\n.\n\n\nExtensive documentation\n, and \ngreat community support\n.\n\n\nUsed and trusted by large companies such as \nMozilla\n and \nEventbrite\n.\n\n\n\n\n\n\n\n\nAbove\n: \nScreenshot from the browsable API\n\n\nRequirements\n\n\nREST framework requires the following:\n\n\n\n\nPython (2.7, 3.2, 3.3, 3.4, 3.5)\n\n\nDjango (1.7+, 1.8, 1.9)\n\n\n\n\nThe following packages are optional:\n\n\n\n\nMarkdown\n (2.1.0+) - Markdown support for the browsable API.\n\n\ndjango-filter\n (0.9.2+) - Filtering support.\n\n\n[django-crispy-forms][django-crispy-forms] - Improved HTML display for filtering.\n\n\ndjango-guardian\n (1.1.1+) - Object level permissions support.\n\n\n\n\nInstallation\n\n\nInstall using \npip\n, including any optional packages you want...\n\n\npip install djangorestframework\npip install markdown # Markdown support for the browsable API.\npip install django-filter # Filtering support\n\n\n\n...or clone the project from github.\n\n\ngit clone git@github.com:tomchristie/django-rest-framework.git\n\n\n\nAdd \n'rest_framework'\n to your \nINSTALLED_APPS\n setting.\n\n\nINSTALLED_APPS = (\n ...\n 'rest_framework',\n)\n\n\n\nIf you're intending to use the browsable API you'll probably also want to add REST framework's login and logout views. Add the following to your root \nurls.py\n file.\n\n\nurlpatterns = [\n ...\n url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))\n]\n\n\n\nNote that the URL path can be whatever you want, but you must include \n'rest_framework.urls'\n with the \n'rest_framework'\n namespace.\n\n\nExample\n\n\nLet's take a look at a quick example of using REST framework to build a simple model-backed API.\n\n\nWe'll create a read-write API for accessing information on the users of our project.\n\n\nAny global settings for a REST framework API are kept in a single configuration dictionary named \nREST_FRAMEWORK\n. Start off by adding the following to your \nsettings.py\n module:\n\n\nREST_FRAMEWORK = {\n # Use Django's standard `django.contrib.auth` permissions,\n # or allow read-only access for unauthenticated users.\n 'DEFAULT_PERMISSION_CLASSES': [\n 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly'\n ]\n}\n\n\n\nDon't forget to make sure you've also added \nrest_framework\n to your \nINSTALLED_APPS\n.\n\n\nWe're ready to create our API now.\nHere's our project's root \nurls.py\n module:\n\n\nfrom django.conf.urls import url, include\nfrom django.contrib.auth.models import User\nfrom rest_framework import routers, serializers, viewsets\n\n# Serializers define the API representation.\nclass UserSerializer(serializers.HyperlinkedModelSerializer):\n class Meta:\n model = User\n fields = ('url', 'username', 'email', 'is_staff')\n\n# ViewSets define the view behavior.\nclass UserViewSet(viewsets.ModelViewSet):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n\n# Routers provide an easy way of automatically determining the URL conf.\nrouter = routers.DefaultRouter()\nrouter.register(r'users', UserViewSet)\n\n# Wire up our API using automatic URL routing.\n# Additionally, we include login URLs for the browsable API.\nurlpatterns = [\n url(r'^', include(router.urls)),\n url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))\n]\n\n\n\nYou can now open the API in your browser at \nhttp://127.0.0.1:8000/\n, and view your new 'users' API. If you use the login control in the top right corner you'll also be able to add, create and delete users from the system.\n\n\nQuickstart\n\n\nCan't wait to get started? The \nquickstart guide\n is the fastest way to get up and running, and building APIs with REST framework.\n\n\nTutorial\n\n\nThe tutorial will walk you through the building blocks that make up REST framework. It'll take a little while to get through, but it'll give you a comprehensive understanding of how everything fits together, and is highly recommended reading.\n\n\n\n\n1 - Serialization\n\n\n2 - Requests \n Responses\n\n\n3 - Class based views\n\n\n4 - Authentication \n permissions\n\n\n5 - Relationships \n hyperlinked APIs\n\n\n6 - Viewsets \n routers\n\n\n\n\nThere is a live example API of the finished tutorial API for testing purposes, \navailable here\n.\n\n\nAPI Guide\n\n\nThe API guide is your complete reference manual to all the functionality provided by REST framework.\n\n\n\n\nRequests\n\n\nResponses\n\n\nViews\n\n\nGeneric views\n\n\nViewsets\n\n\nRouters\n\n\nParsers\n\n\nRenderers\n\n\nSerializers\n\n\nSerializer fields\n\n\nSerializer relations\n\n\nValidators\n\n\nAuthentication\n\n\nPermissions\n\n\nThrottling\n\n\nFiltering\n\n\nPagination\n\n\nVersioning\n\n\nContent negotiation\n\n\nMetadata\n\n\nFormat suffixes\n\n\nReturning URLs\n\n\nExceptions\n\n\nStatus codes\n\n\nTesting\n\n\nSettings\n\n\n\n\nTopics\n\n\nGeneral guides to using REST framework.\n\n\n\n\nDocumenting your API\n\n\nInternationalization\n\n\nAJAX, CSRF \n CORS\n\n\nHTML \n Forms\n\n\nBrowser enhancements\n\n\nThe Browsable API\n\n\nREST, Hypermedia \n HATEOAS\n\n\nThird Party Resources\n\n\nContributing to REST framework\n\n\nProject management\n\n\n3.0 Announcement\n\n\n3.1 Announcement\n\n\n3.2 Announcement\n\n\n3.3 Announcement\n\n\nKickstarter Announcement\n\n\nRelease Notes\n\n\n\n\nDevelopment\n\n\nSee the \nContribution guidelines\n for information on how to clone\nthe repository, run the test suite and contribute changes back to REST\nFramework.\n\n\nSupport\n\n\nFor support please see the \nREST framework discussion group\n, try the \n#restframework\n channel on \nirc.freenode.net\n, search \nthe IRC archives\n, or raise a question on \nStack Overflow\n, making sure to include the \n'django-rest-framework'\n tag.\n\n\nPaid support is available\n from \nDabApps\n, and can include work on REST framework core, or support with building your REST framework API. Please \ncontact DabApps\n if you'd like to discuss commercial support options.\n\n\nFor updates on REST framework development, you may also want to follow \nthe author\n on Twitter.\n\n\nFollow @_tomchristie\n\n\n!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=\"//platform.twitter.com/widgets.js\";fjs.parentNode.insertBefore(js,fjs);}}(document,\"script\",\"twitter-wjs\");\n\n\nSecurity\n\n\nIf you believe you\u2019ve found something in Django REST framework which has security implications, please \ndo not raise the issue in a public forum\n.\n\n\nSend a description of the issue via email to \nrest-framework-security@googlegroups.com\n. The project maintainers will then work with you to resolve any issues where required, prior to any public disclosure.\n\n\nLicense\n\n\nCopyright (c) 2011-2015, Tom Christie\nAll rights reserved.\n\n\nRedistribution and use in source and binary forms, with or without\nmodification, are permitted provided that the following conditions are met:\n\n\nRedistributions of source code must retain the above copyright notice, this\nlist of conditions and the following disclaimer.\nRedistributions in binary form must reproduce the above copyright notice, this\nlist of conditions and the following disclaimer in the documentation and/or\nother materials provided with the distribution.\n\n\nTHIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\nANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\nWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\nDISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE\nFOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\nDAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\nSERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\nCAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\nOR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\nOF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.",
+ "text": "Note\n: This is the documentation for the \nversion 3\n of REST framework. Documentation for \nversion 2\n is also available.\n\n\n\n\n\n\nDjango REST Framework\n\n\n\n\n\n\n\n\nDjango REST framework is a powerful and flexible toolkit for building Web APIs.\n\n\nSome reasons you might want to use REST framework:\n\n\n\n\nThe \nWeb browsable API\n is a huge usability win for your developers.\n\n\nAuthentication policies\n including packages for \nOAuth1a\n and \nOAuth2\n.\n\n\nSerialization\n that supports both \nORM\n and \nnon-ORM\n data sources.\n\n\nCustomizable all the way down - just use \nregular function-based views\n if you don't need the \nmore\n \npowerful\n \nfeatures\n.\n\n\nExtensive documentation\n, and \ngreat community support\n.\n\n\nUsed and trusted by large companies such as \nMozilla\n and \nEventbrite\n.\n\n\n\n\n\n\n\n\nAbove\n: \nScreenshot from the browsable API\n\n\nRequirements\n\n\nREST framework requires the following:\n\n\n\n\nPython (2.7, 3.2, 3.3, 3.4, 3.5)\n\n\nDjango (1.7+, 1.8, 1.9)\n\n\n\n\nThe following packages are optional:\n\n\n\n\nMarkdown\n (2.1.0+) - Markdown support for the browsable API.\n\n\ndjango-filter\n (0.9.2+) - Filtering support.\n\n\ndjango-crispy-forms\n - Improved HTML display for filtering.\n\n\ndjango-guardian\n (1.1.1+) - Object level permissions support.\n\n\n\n\nInstallation\n\n\nInstall using \npip\n, including any optional packages you want...\n\n\npip install djangorestframework\npip install markdown # Markdown support for the browsable API.\npip install django-filter # Filtering support\n\n\n\n...or clone the project from github.\n\n\ngit clone git@github.com:tomchristie/django-rest-framework.git\n\n\n\nAdd \n'rest_framework'\n to your \nINSTALLED_APPS\n setting.\n\n\nINSTALLED_APPS = (\n ...\n 'rest_framework',\n)\n\n\n\nIf you're intending to use the browsable API you'll probably also want to add REST framework's login and logout views. Add the following to your root \nurls.py\n file.\n\n\nurlpatterns = [\n ...\n url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))\n]\n\n\n\nNote that the URL path can be whatever you want, but you must include \n'rest_framework.urls'\n with the \n'rest_framework'\n namespace. You may leave out the namespace in Django 1.9+, and REST framework will set it for you.\n\n\nExample\n\n\nLet's take a look at a quick example of using REST framework to build a simple model-backed API.\n\n\nWe'll create a read-write API for accessing information on the users of our project.\n\n\nAny global settings for a REST framework API are kept in a single configuration dictionary named \nREST_FRAMEWORK\n. Start off by adding the following to your \nsettings.py\n module:\n\n\nREST_FRAMEWORK = {\n # Use Django's standard `django.contrib.auth` permissions,\n # or allow read-only access for unauthenticated users.\n 'DEFAULT_PERMISSION_CLASSES': [\n 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly'\n ]\n}\n\n\n\nDon't forget to make sure you've also added \nrest_framework\n to your \nINSTALLED_APPS\n.\n\n\nWe're ready to create our API now.\nHere's our project's root \nurls.py\n module:\n\n\nfrom django.conf.urls import url, include\nfrom django.contrib.auth.models import User\nfrom rest_framework import routers, serializers, viewsets\n\n# Serializers define the API representation.\nclass UserSerializer(serializers.HyperlinkedModelSerializer):\n class Meta:\n model = User\n fields = ('url', 'username', 'email', 'is_staff')\n\n# ViewSets define the view behavior.\nclass UserViewSet(viewsets.ModelViewSet):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n\n# Routers provide an easy way of automatically determining the URL conf.\nrouter = routers.DefaultRouter()\nrouter.register(r'users', UserViewSet)\n\n# Wire up our API using automatic URL routing.\n# Additionally, we include login URLs for the browsable API.\nurlpatterns = [\n url(r'^', include(router.urls)),\n url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))\n]\n\n\n\nYou can now open the API in your browser at \nhttp://127.0.0.1:8000/\n, and view your new 'users' API. If you use the login control in the top right corner you'll also be able to add, create and delete users from the system.\n\n\nQuickstart\n\n\nCan't wait to get started? The \nquickstart guide\n is the fastest way to get up and running, and building APIs with REST framework.\n\n\nTutorial\n\n\nThe tutorial will walk you through the building blocks that make up REST framework. It'll take a little while to get through, but it'll give you a comprehensive understanding of how everything fits together, and is highly recommended reading.\n\n\n\n\n1 - Serialization\n\n\n2 - Requests \n Responses\n\n\n3 - Class based views\n\n\n4 - Authentication \n permissions\n\n\n5 - Relationships \n hyperlinked APIs\n\n\n6 - Viewsets \n routers\n\n\n\n\nThere is a live example API of the finished tutorial API for testing purposes, \navailable here\n.\n\n\nAPI Guide\n\n\nThe API guide is your complete reference manual to all the functionality provided by REST framework.\n\n\n\n\nRequests\n\n\nResponses\n\n\nViews\n\n\nGeneric views\n\n\nViewsets\n\n\nRouters\n\n\nParsers\n\n\nRenderers\n\n\nSerializers\n\n\nSerializer fields\n\n\nSerializer relations\n\n\nValidators\n\n\nAuthentication\n\n\nPermissions\n\n\nThrottling\n\n\nFiltering\n\n\nPagination\n\n\nVersioning\n\n\nContent negotiation\n\n\nMetadata\n\n\nFormat suffixes\n\n\nReturning URLs\n\n\nExceptions\n\n\nStatus codes\n\n\nTesting\n\n\nSettings\n\n\n\n\nTopics\n\n\nGeneral guides to using REST framework.\n\n\n\n\nDocumenting your API\n\n\nInternationalization\n\n\nAJAX, CSRF \n CORS\n\n\nHTML \n Forms\n\n\nBrowser enhancements\n\n\nThe Browsable API\n\n\nREST, Hypermedia \n HATEOAS\n\n\nThird Party Resources\n\n\nContributing to REST framework\n\n\nProject management\n\n\n3.0 Announcement\n\n\n3.1 Announcement\n\n\n3.2 Announcement\n\n\n3.3 Announcement\n\n\nKickstarter Announcement\n\n\nRelease Notes\n\n\n\n\nDevelopment\n\n\nSee the \nContribution guidelines\n for information on how to clone\nthe repository, run the test suite and contribute changes back to REST\nFramework.\n\n\nSupport\n\n\nFor support please see the \nREST framework discussion group\n, try the \n#restframework\n channel on \nirc.freenode.net\n, search \nthe IRC archives\n, or raise a question on \nStack Overflow\n, making sure to include the \n'django-rest-framework'\n tag.\n\n\nPaid support is available\n from \nDabApps\n, and can include work on REST framework core, or support with building your REST framework API. Please \ncontact DabApps\n if you'd like to discuss commercial support options.\n\n\nFor updates on REST framework development, you may also want to follow \nthe author\n on Twitter.\n\n\nFollow @_tomchristie\n\n\n!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=\"//platform.twitter.com/widgets.js\";fjs.parentNode.insertBefore(js,fjs);}}(document,\"script\",\"twitter-wjs\");\n\n\nSecurity\n\n\nIf you believe you\u2019ve found something in Django REST framework which has security implications, please \ndo not raise the issue in a public forum\n.\n\n\nSend a description of the issue via email to \nrest-framework-security@googlegroups.com\n. The project maintainers will then work with you to resolve any issues where required, prior to any public disclosure.\n\n\nLicense\n\n\nCopyright (c) 2011-2015, Tom Christie\nAll rights reserved.\n\n\nRedistribution and use in source and binary forms, with or without\nmodification, are permitted provided that the following conditions are met:\n\n\nRedistributions of source code must retain the above copyright notice, this\nlist of conditions and the following disclaimer.\nRedistributions in binary form must reproduce the above copyright notice, this\nlist of conditions and the following disclaimer in the documentation and/or\nother materials provided with the distribution.\n\n\nTHIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\nANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\nWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\nDISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE\nFOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\nDAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\nSERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\nCAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\nOR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\nOF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.",
"title": "Home"
},
{
"location": "/#requirements",
- "text": "REST framework requires the following: Python (2.7, 3.2, 3.3, 3.4, 3.5) Django (1.7+, 1.8, 1.9) The following packages are optional: Markdown (2.1.0+) - Markdown support for the browsable API. django-filter (0.9.2+) - Filtering support. [django-crispy-forms][django-crispy-forms] - Improved HTML display for filtering. django-guardian (1.1.1+) - Object level permissions support.",
+ "text": "REST framework requires the following: Python (2.7, 3.2, 3.3, 3.4, 3.5) Django (1.7+, 1.8, 1.9) The following packages are optional: Markdown (2.1.0+) - Markdown support for the browsable API. django-filter (0.9.2+) - Filtering support. django-crispy-forms - Improved HTML display for filtering. django-guardian (1.1.1+) - Object level permissions support.",
"title": "Requirements"
},
{
"location": "/#installation",
- "text": "Install using pip , including any optional packages you want... pip install djangorestframework\npip install markdown # Markdown support for the browsable API.\npip install django-filter # Filtering support ...or clone the project from github. git clone git@github.com:tomchristie/django-rest-framework.git Add 'rest_framework' to your INSTALLED_APPS setting. INSTALLED_APPS = (\n ...\n 'rest_framework',\n) If you're intending to use the browsable API you'll probably also want to add REST framework's login and logout views. Add the following to your root urls.py file. urlpatterns = [\n ...\n url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))\n] Note that the URL path can be whatever you want, but you must include 'rest_framework.urls' with the 'rest_framework' namespace.",
+ "text": "Install using pip , including any optional packages you want... pip install djangorestframework\npip install markdown # Markdown support for the browsable API.\npip install django-filter # Filtering support ...or clone the project from github. git clone git@github.com:tomchristie/django-rest-framework.git Add 'rest_framework' to your INSTALLED_APPS setting. INSTALLED_APPS = (\n ...\n 'rest_framework',\n) If you're intending to use the browsable API you'll probably also want to add REST framework's login and logout views. Add the following to your root urls.py file. urlpatterns = [\n ...\n url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework'))\n] Note that the URL path can be whatever you want, but you must include 'rest_framework.urls' with the 'rest_framework' namespace. You may leave out the namespace in Django 1.9+, and REST framework will set it for you.",
"title": "Installation"
},
{
@@ -237,7 +237,7 @@
},
{
"location": "/tutorial/4-authentication-and-permissions/",
- "text": "Tutorial 4: Authentication \n Permissions\n\n\nCurrently our API doesn't have any restrictions on who can edit or delete code snippets. We'd like to have some more advanced behavior in order to make sure that:\n\n\n\n\nCode snippets are always associated with a creator.\n\n\nOnly authenticated users may create snippets.\n\n\nOnly the creator of a snippet may update or delete it.\n\n\nUnauthenticated requests should have full read-only access.\n\n\n\n\nAdding information to our model\n\n\nWe're going to make a couple of changes to our \nSnippet\n model class.\nFirst, let's add a couple of fields. One of those fields will be used to represent the user who created the code snippet. The other field will be used to store the highlighted HTML representation of the code.\n\n\nAdd the following two fields to the \nSnippet\n model in \nmodels.py\n.\n\n\nowner = models.ForeignKey('auth.User', related_name='snippets')\nhighlighted = models.TextField()\n\n\n\nWe'd also need to make sure that when the model is saved, that we populate the highlighted field, using the \npygments\n code highlighting library.\n\n\nWe'll need some extra imports:\n\n\nfrom pygments.lexers import get_lexer_by_name\nfrom pygments.formatters.html import HtmlFormatter\nfrom pygments import highlight\n\n\n\nAnd now we can add a \n.save()\n method to our model class:\n\n\ndef save(self, *args, **kwargs):\n \"\"\"\n Use the `pygments` library to create a highlighted HTML\n representation of the code snippet.\n \"\"\"\n lexer = get_lexer_by_name(self.language)\n linenos = self.linenos and 'table' or False\n options = self.title and {'title': self.title} or {}\n formatter = HtmlFormatter(style=self.style, linenos=linenos,\n full=True, **options)\n self.highlighted = highlight(self.code, lexer, formatter)\n super(Snippet, self).save(*args, **kwargs)\n\n\n\nWhen that's all done we'll need to update our database tables.\nNormally we'd create a database migration in order to do that, but for the purposes of this tutorial, let's just delete the database and start again.\n\n\nrm -f tmp.db db.sqlite3\nrm -r snippets/migrations\npython manage.py makemigrations snippets\npython manage.py migrate\n\n\n\nYou might also want to create a few different users, to use for testing the API. The quickest way to do this will be with the \ncreatesuperuser\n command.\n\n\npython manage.py createsuperuser\n\n\n\nAdding endpoints for our User models\n\n\nNow that we've got some users to work with, we'd better add representations of those users to our API. Creating a new serializer is easy. In \nserializers.py\n add:\n\n\nfrom django.contrib.auth.models import User\n\nclass UserSerializer(serializers.ModelSerializer):\n snippets = serializers.PrimaryKeyRelatedField(many=True, queryset=Snippet.objects.all())\n\n class Meta:\n model = User\n fields = ('id', 'username', 'snippets')\n\n\n\nBecause \n'snippets'\n is a \nreverse\n relationship on the User model, it will not be included by default when using the \nModelSerializer\n class, so we needed to add an explicit field for it.\n\n\nWe'll also add a couple of views to \nviews.py\n. We'd like to just use read-only views for the user representations, so we'll use the \nListAPIView\n and \nRetrieveAPIView\n generic class based views.\n\n\nfrom django.contrib.auth.models import User\n\n\nclass UserList(generics.ListAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n\n\nclass UserDetail(generics.RetrieveAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n\n\n\nMake sure to also import the \nUserSerializer\n class\n\n\nfrom snippets.serializers import UserSerializer\n\n\n\nFinally we need to add those views into the API, by referencing them from the URL conf. Add the following to the patterns in \nurls.py\n.\n\n\nurl(r'^users/$', views.UserList.as_view()),\nurl(r'^users/(?P\npk\n[0-9]+)/$', views.UserDetail.as_view()),\n\n\n\nAssociating Snippets with Users\n\n\nRight now, if we created a code snippet, there'd be no way of associating the user that created the snippet, with the snippet instance. The user isn't sent as part of the serialized representation, but is instead a property of the incoming request.\n\n\nThe way we deal with that is by overriding a \n.perform_create()\n method on our snippet views, that allows us to modify how the instance save is managed, and handle any information that is implicit in the incoming request or requested URL.\n\n\nOn the \nSnippetList\n view class, add the following method:\n\n\ndef perform_create(self, serializer):\n serializer.save(owner=self.request.user)\n\n\n\nThe \ncreate()\n method of our serializer will now be passed an additional \n'owner'\n field, along with the validated data from the request.\n\n\nUpdating our serializer\n\n\nNow that snippets are associated with the user that created them, let's update our \nSnippetSerializer\n to reflect that. Add the following field to the serializer definition in \nserializers.py\n:\n\n\nowner = serializers.ReadOnlyField(source='owner.username')\n\n\n\nNote\n: Make sure you also add \n'owner',\n to the list of fields in the inner \nMeta\n class.\n\n\nThis field is doing something quite interesting. The \nsource\n argument controls which attribute is used to populate a field, and can point at any attribute on the serialized instance. It can also take the dotted notation shown above, in which case it will traverse the given attributes, in a similar way as it is used with Django's template language.\n\n\nThe field we've added is the untyped \nReadOnlyField\n class, in contrast to the other typed fields, such as \nCharField\n, \nBooleanField\n etc... The untyped \nReadOnlyField\n is always read-only, and will be used for serialized representations, but will not be used for updating model instances when they are deserialized. We could have also used \nCharField(read_only=True)\n here.\n\n\nAdding required permissions to views\n\n\nNow that code snippets are associated with users, we want to make sure that only authenticated users are able to create, update and delete code snippets.\n\n\nREST framework includes a number of permission classes that we can use to restrict who can access a given view. In this case the one we're looking for is \nIsAuthenticatedOrReadOnly\n, which will ensure that authenticated requests get read-write access, and unauthenticated requests get read-only access.\n\n\nFirst add the following import in the views module\n\n\nfrom rest_framework import permissions\n\n\n\nThen, add the following property to \nboth\n the \nSnippetList\n and \nSnippetDetail\n view classes.\n\n\npermission_classes = (permissions.IsAuthenticatedOrReadOnly,)\n\n\n\nAdding login to the Browsable API\n\n\nIf you open a browser and navigate to the browsable API at the moment, you'll find that you're no longer able to create new code snippets. In order to do so we'd need to be able to login as a user.\n\n\nWe can add a login view for use with the browsable API, by editing the URLconf in our project-level \nurls.py\n file.\n\n\nAdd the following import at the top of the file:\n\n\nfrom django.conf.urls import include\n\n\n\nAnd, at the end of the file, add a pattern to include the login and logout views for the browsable API.\n\n\nurlpatterns += [\n url(r'^api-auth/', include('rest_framework.urls',\n namespace='rest_framework')),\n]\n\n\n\nThe \nr'^api-auth/'\n part of pattern can actually be whatever URL you want to use. The only restriction is that the included urls must use the \n'rest_framework'\n namespace.\n\n\nNow if you open up the browser again and refresh the page you'll see a 'Login' link in the top right of the page. If you log in as one of the users you created earlier, you'll be able to create code snippets again.\n\n\nOnce you've created a few code snippets, navigate to the '/users/' endpoint, and notice that the representation includes a list of the snippet pks that are associated with each user, in each user's 'snippets' field.\n\n\nObject level permissions\n\n\nReally we'd like all code snippets to be visible to anyone, but also make sure that only the user that created a code snippet is able to update or delete it.\n\n\nTo do that we're going to need to create a custom permission.\n\n\nIn the snippets app, create a new file, \npermissions.py\n\n\nfrom rest_framework import permissions\n\n\nclass IsOwnerOrReadOnly(permissions.BasePermission):\n \"\"\"\n Custom permission to only allow owners of an object to edit it.\n \"\"\"\n\n def has_object_permission(self, request, view, obj):\n # Read permissions are allowed to any request,\n # so we'll always allow GET, HEAD or OPTIONS requests.\n if request.method in permissions.SAFE_METHODS:\n return True\n\n # Write permissions are only allowed to the owner of the snippet.\n return obj.owner == request.user\n\n\n\nNow we can add that custom permission to our snippet instance endpoint, by editing the \npermission_classes\n property on the \nSnippetDetail\n view class:\n\n\npermission_classes = (permissions.IsAuthenticatedOrReadOnly,\n IsOwnerOrReadOnly,)\n\n\n\nMake sure to also import the \nIsOwnerOrReadOnly\n class.\n\n\nfrom snippets.permissions import IsOwnerOrReadOnly\n\n\n\nNow, if you open a browser again, you find that the 'DELETE' and 'PUT' actions only appear on a snippet instance endpoint if you're logged in as the same user that created the code snippet.\n\n\nAuthenticating with the API\n\n\nBecause we now have a set of permissions on the API, we need to authenticate our requests to it if we want to edit any snippets. We haven't set up any \nauthentication classes\n, so the defaults are currently applied, which are \nSessionAuthentication\n and \nBasicAuthentication\n.\n\n\nWhen we interact with the API through the web browser, we can login, and the browser session will then provide the required authentication for the requests.\n\n\nIf we're interacting with the API programmatically we need to explicitly provide the authentication credentials on each request.\n\n\nIf we try to create a snippet without authenticating, we'll get an error:\n\n\nhttp POST http://127.0.0.1:8000/snippets/ code=\"print 123\"\n\n{\n \"detail\": \"Authentication credentials were not provided.\"\n}\n\n\n\nWe can make a successful request by including the username and password of one of the users we created earlier.\n\n\nhttp -a tom:password POST http://127.0.0.1:8000/snippets/ code=\"print 789\"\n\n{\n \"id\": 5,\n \"owner\": \"tom\",\n \"title\": \"foo\",\n \"code\": \"print 789\",\n \"linenos\": false,\n \"language\": \"python\",\n \"style\": \"friendly\"\n}\n\n\n\nSummary\n\n\nWe've now got a fairly fine-grained set of permissions on our Web API, and end points for users of the system and for the code snippets that they have created.\n\n\nIn \npart 5\n of the tutorial we'll look at how we can tie everything together by creating an HTML endpoint for our highlighted snippets, and improve the cohesion of our API by using hyperlinking for the relationships within the system.",
+ "text": "Tutorial 4: Authentication \n Permissions\n\n\nCurrently our API doesn't have any restrictions on who can edit or delete code snippets. We'd like to have some more advanced behavior in order to make sure that:\n\n\n\n\nCode snippets are always associated with a creator.\n\n\nOnly authenticated users may create snippets.\n\n\nOnly the creator of a snippet may update or delete it.\n\n\nUnauthenticated requests should have full read-only access.\n\n\n\n\nAdding information to our model\n\n\nWe're going to make a couple of changes to our \nSnippet\n model class.\nFirst, let's add a couple of fields. One of those fields will be used to represent the user who created the code snippet. The other field will be used to store the highlighted HTML representation of the code.\n\n\nAdd the following two fields to the \nSnippet\n model in \nmodels.py\n.\n\n\nowner = models.ForeignKey('auth.User', related_name='snippets')\nhighlighted = models.TextField()\n\n\n\nWe'd also need to make sure that when the model is saved, that we populate the highlighted field, using the \npygments\n code highlighting library.\n\n\nWe'll need some extra imports:\n\n\nfrom pygments.lexers import get_lexer_by_name\nfrom pygments.formatters.html import HtmlFormatter\nfrom pygments import highlight\n\n\n\nAnd now we can add a \n.save()\n method to our model class:\n\n\ndef save(self, *args, **kwargs):\n \"\"\"\n Use the `pygments` library to create a highlighted HTML\n representation of the code snippet.\n \"\"\"\n lexer = get_lexer_by_name(self.language)\n linenos = self.linenos and 'table' or False\n options = self.title and {'title': self.title} or {}\n formatter = HtmlFormatter(style=self.style, linenos=linenos,\n full=True, **options)\n self.highlighted = highlight(self.code, lexer, formatter)\n super(Snippet, self).save(*args, **kwargs)\n\n\n\nWhen that's all done we'll need to update our database tables.\nNormally we'd create a database migration in order to do that, but for the purposes of this tutorial, let's just delete the database and start again.\n\n\nrm -f tmp.db db.sqlite3\nrm -r snippets/migrations\npython manage.py makemigrations snippets\npython manage.py migrate\n\n\n\nYou might also want to create a few different users, to use for testing the API. The quickest way to do this will be with the \ncreatesuperuser\n command.\n\n\npython manage.py createsuperuser\n\n\n\nAdding endpoints for our User models\n\n\nNow that we've got some users to work with, we'd better add representations of those users to our API. Creating a new serializer is easy. In \nserializers.py\n add:\n\n\nfrom django.contrib.auth.models import User\n\nclass UserSerializer(serializers.ModelSerializer):\n snippets = serializers.PrimaryKeyRelatedField(many=True, queryset=Snippet.objects.all())\n\n class Meta:\n model = User\n fields = ('id', 'username', 'snippets')\n\n\n\nBecause \n'snippets'\n is a \nreverse\n relationship on the User model, it will not be included by default when using the \nModelSerializer\n class, so we needed to add an explicit field for it.\n\n\nWe'll also add a couple of views to \nviews.py\n. We'd like to just use read-only views for the user representations, so we'll use the \nListAPIView\n and \nRetrieveAPIView\n generic class based views.\n\n\nfrom django.contrib.auth.models import User\n\n\nclass UserList(generics.ListAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n\n\nclass UserDetail(generics.RetrieveAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n\n\n\nMake sure to also import the \nUserSerializer\n class\n\n\nfrom snippets.serializers import UserSerializer\n\n\n\nFinally we need to add those views into the API, by referencing them from the URL conf. Add the following to the patterns in \nurls.py\n.\n\n\nurl(r'^users/$', views.UserList.as_view()),\nurl(r'^users/(?P\npk\n[0-9]+)/$', views.UserDetail.as_view()),\n\n\n\nAssociating Snippets with Users\n\n\nRight now, if we created a code snippet, there'd be no way of associating the user that created the snippet, with the snippet instance. The user isn't sent as part of the serialized representation, but is instead a property of the incoming request.\n\n\nThe way we deal with that is by overriding a \n.perform_create()\n method on our snippet views, that allows us to modify how the instance save is managed, and handle any information that is implicit in the incoming request or requested URL.\n\n\nOn the \nSnippetList\n view class, add the following method:\n\n\ndef perform_create(self, serializer):\n serializer.save(owner=self.request.user)\n\n\n\nThe \ncreate()\n method of our serializer will now be passed an additional \n'owner'\n field, along with the validated data from the request.\n\n\nUpdating our serializer\n\n\nNow that snippets are associated with the user that created them, let's update our \nSnippetSerializer\n to reflect that. Add the following field to the serializer definition in \nserializers.py\n:\n\n\nowner = serializers.ReadOnlyField(source='owner.username')\n\n\n\nNote\n: Make sure you also add \n'owner',\n to the list of fields in the inner \nMeta\n class.\n\n\nThis field is doing something quite interesting. The \nsource\n argument controls which attribute is used to populate a field, and can point at any attribute on the serialized instance. It can also take the dotted notation shown above, in which case it will traverse the given attributes, in a similar way as it is used with Django's template language.\n\n\nThe field we've added is the untyped \nReadOnlyField\n class, in contrast to the other typed fields, such as \nCharField\n, \nBooleanField\n etc... The untyped \nReadOnlyField\n is always read-only, and will be used for serialized representations, but will not be used for updating model instances when they are deserialized. We could have also used \nCharField(read_only=True)\n here.\n\n\nAdding required permissions to views\n\n\nNow that code snippets are associated with users, we want to make sure that only authenticated users are able to create, update and delete code snippets.\n\n\nREST framework includes a number of permission classes that we can use to restrict who can access a given view. In this case the one we're looking for is \nIsAuthenticatedOrReadOnly\n, which will ensure that authenticated requests get read-write access, and unauthenticated requests get read-only access.\n\n\nFirst add the following import in the views module\n\n\nfrom rest_framework import permissions\n\n\n\nThen, add the following property to \nboth\n the \nSnippetList\n and \nSnippetDetail\n view classes.\n\n\npermission_classes = (permissions.IsAuthenticatedOrReadOnly,)\n\n\n\nAdding login to the Browsable API\n\n\nIf you open a browser and navigate to the browsable API at the moment, you'll find that you're no longer able to create new code snippets. In order to do so we'd need to be able to login as a user.\n\n\nWe can add a login view for use with the browsable API, by editing the URLconf in our project-level \nurls.py\n file.\n\n\nAdd the following import at the top of the file:\n\n\nfrom django.conf.urls import include\n\n\n\nAnd, at the end of the file, add a pattern to include the login and logout views for the browsable API.\n\n\nurlpatterns += [\n url(r'^api-auth/', include('rest_framework.urls',\n namespace='rest_framework')),\n]\n\n\n\nThe \nr'^api-auth/'\n part of pattern can actually be whatever URL you want to use. The only restriction is that the included urls must use the \n'rest_framework'\n namespace. In Django 1.9+, REST framework will set the namespace, so you may leave it out.\n\n\nNow if you open up the browser again and refresh the page you'll see a 'Login' link in the top right of the page. If you log in as one of the users you created earlier, you'll be able to create code snippets again.\n\n\nOnce you've created a few code snippets, navigate to the '/users/' endpoint, and notice that the representation includes a list of the snippet pks that are associated with each user, in each user's 'snippets' field.\n\n\nObject level permissions\n\n\nReally we'd like all code snippets to be visible to anyone, but also make sure that only the user that created a code snippet is able to update or delete it.\n\n\nTo do that we're going to need to create a custom permission.\n\n\nIn the snippets app, create a new file, \npermissions.py\n\n\nfrom rest_framework import permissions\n\n\nclass IsOwnerOrReadOnly(permissions.BasePermission):\n \"\"\"\n Custom permission to only allow owners of an object to edit it.\n \"\"\"\n\n def has_object_permission(self, request, view, obj):\n # Read permissions are allowed to any request,\n # so we'll always allow GET, HEAD or OPTIONS requests.\n if request.method in permissions.SAFE_METHODS:\n return True\n\n # Write permissions are only allowed to the owner of the snippet.\n return obj.owner == request.user\n\n\n\nNow we can add that custom permission to our snippet instance endpoint, by editing the \npermission_classes\n property on the \nSnippetDetail\n view class:\n\n\npermission_classes = (permissions.IsAuthenticatedOrReadOnly,\n IsOwnerOrReadOnly,)\n\n\n\nMake sure to also import the \nIsOwnerOrReadOnly\n class.\n\n\nfrom snippets.permissions import IsOwnerOrReadOnly\n\n\n\nNow, if you open a browser again, you find that the 'DELETE' and 'PUT' actions only appear on a snippet instance endpoint if you're logged in as the same user that created the code snippet.\n\n\nAuthenticating with the API\n\n\nBecause we now have a set of permissions on the API, we need to authenticate our requests to it if we want to edit any snippets. We haven't set up any \nauthentication classes\n, so the defaults are currently applied, which are \nSessionAuthentication\n and \nBasicAuthentication\n.\n\n\nWhen we interact with the API through the web browser, we can login, and the browser session will then provide the required authentication for the requests.\n\n\nIf we're interacting with the API programmatically we need to explicitly provide the authentication credentials on each request.\n\n\nIf we try to create a snippet without authenticating, we'll get an error:\n\n\nhttp POST http://127.0.0.1:8000/snippets/ code=\"print 123\"\n\n{\n \"detail\": \"Authentication credentials were not provided.\"\n}\n\n\n\nWe can make a successful request by including the username and password of one of the users we created earlier.\n\n\nhttp -a tom:password POST http://127.0.0.1:8000/snippets/ code=\"print 789\"\n\n{\n \"id\": 5,\n \"owner\": \"tom\",\n \"title\": \"foo\",\n \"code\": \"print 789\",\n \"linenos\": false,\n \"language\": \"python\",\n \"style\": \"friendly\"\n}\n\n\n\nSummary\n\n\nWe've now got a fairly fine-grained set of permissions on our Web API, and end points for users of the system and for the code snippets that they have created.\n\n\nIn \npart 5\n of the tutorial we'll look at how we can tie everything together by creating an HTML endpoint for our highlighted snippets, and improve the cohesion of our API by using hyperlinking for the relationships within the system.",
"title": "4 - Authentication and permissions"
},
{
@@ -272,7 +272,7 @@
},
{
"location": "/tutorial/4-authentication-and-permissions/#adding-login-to-the-browsable-api",
- "text": "If you open a browser and navigate to the browsable API at the moment, you'll find that you're no longer able to create new code snippets. In order to do so we'd need to be able to login as a user. We can add a login view for use with the browsable API, by editing the URLconf in our project-level urls.py file. Add the following import at the top of the file: from django.conf.urls import include And, at the end of the file, add a pattern to include the login and logout views for the browsable API. urlpatterns += [\n url(r'^api-auth/', include('rest_framework.urls',\n namespace='rest_framework')),\n] The r'^api-auth/' part of pattern can actually be whatever URL you want to use. The only restriction is that the included urls must use the 'rest_framework' namespace. Now if you open up the browser again and refresh the page you'll see a 'Login' link in the top right of the page. If you log in as one of the users you created earlier, you'll be able to create code snippets again. Once you've created a few code snippets, navigate to the '/users/' endpoint, and notice that the representation includes a list of the snippet pks that are associated with each user, in each user's 'snippets' field.",
+ "text": "If you open a browser and navigate to the browsable API at the moment, you'll find that you're no longer able to create new code snippets. In order to do so we'd need to be able to login as a user. We can add a login view for use with the browsable API, by editing the URLconf in our project-level urls.py file. Add the following import at the top of the file: from django.conf.urls import include And, at the end of the file, add a pattern to include the login and logout views for the browsable API. urlpatterns += [\n url(r'^api-auth/', include('rest_framework.urls',\n namespace='rest_framework')),\n] The r'^api-auth/' part of pattern can actually be whatever URL you want to use. The only restriction is that the included urls must use the 'rest_framework' namespace. In Django 1.9+, REST framework will set the namespace, so you may leave it out. Now if you open up the browser again and refresh the page you'll see a 'Login' link in the top right of the page. If you log in as one of the users you created earlier, you'll be able to create code snippets again. Once you've created a few code snippets, navigate to the '/users/' endpoint, and notice that the representation includes a list of the snippet pks that are associated with each user, in each user's 'snippets' field.",
"title": "Adding login to the Browsable API"
},
{
@@ -577,7 +577,7 @@
},
{
"location": "/api-guide/generic-views/",
- "text": "Generic views\n\n\n\n\nDjango\u2019s generic views... were developed as a shortcut for common usage patterns... They take certain common idioms and patterns found in view development and abstract them so that you can quickly write common views of data without having to repeat yourself.\n\n\n \nDjango Documentation\n\n\n\n\nOne of the key benefits of class based views is the way they allow you to compose bits of reusable behavior. REST framework takes advantage of this by providing a number of pre-built views that provide for commonly used patterns.\n\n\nThe generic views provided by REST framework allow you to quickly build API views that map closely to your database models.\n\n\nIf the generic views don't suit the needs of your API, you can drop down to using the regular \nAPIView\n class, or reuse the mixins and base classes used by the generic views to compose your own set of reusable generic views.\n\n\nExamples\n\n\nTypically when using the generic views, you'll override the view, and set several class attributes.\n\n\nfrom django.contrib.auth.models import User\nfrom myapp.serializers import UserSerializer\nfrom rest_framework import generics\nfrom rest_framework.permissions import IsAdminUser\n\nclass UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n paginate_by = 100\n\n\n\nFor more complex cases you might also want to override various methods on the view class. For example.\n\n\nclass UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n\n def get_paginate_by(self):\n \"\"\"\n Use smaller pagination for HTML representations.\n \"\"\"\n if self.request.accepted_renderer.format == 'html':\n return 20\n return 100\n\n def list(self, request):\n # Note the use of `get_queryset()` instead of `self.queryset`\n queryset = self.get_queryset()\n serializer = UserSerializer(queryset, many=True)\n return Response(serializer.data)\n\n\n\nFor very simple cases you might want to pass through any class attributes using the \n.as_view()\n method. For example, your URLconf might include something like the following entry:\n\n\nurl(r'^/users/', ListCreateAPIView.as_view(queryset=User.objects.all(), serializer_class=UserSerializer), name='user-list')\n\n\n\n\n\nAPI Reference\n\n\nGenericAPIView\n\n\nThis class extends REST framework's \nAPIView\n class, adding commonly required behavior for standard list and detail views.\n\n\nEach of the concrete generic views provided is built by combining \nGenericAPIView\n, with one or more mixin classes.\n\n\nAttributes\n\n\nBasic settings\n:\n\n\nThe following attributes control the basic view behavior.\n\n\n\n\nqueryset\n - The queryset that should be used for returning objects from this view. Typically, you must either set this attribute, or override the \nget_queryset()\n method. If you are overriding a view method, it is important that you call \nget_queryset()\n instead of accessing this property directly, as \nqueryset\n will get evaluated once, and those results will be cached for all subsequent requests.\n\n\nserializer_class\n - The serializer class that should be used for validating and deserializing input, and for serializing output. Typically, you must either set this attribute, or override the \nget_serializer_class()\n method.\n\n\nlookup_field\n - The model field that should be used to for performing object lookup of individual model instances. Defaults to \n'pk'\n. Note that when using hyperlinked APIs you'll need to ensure that \nboth\n the API views \nand\n the serializer classes set the lookup fields if you need to use a custom value.\n\n\nlookup_url_kwarg\n - The URL keyword argument that should be used for object lookup. The URL conf should include a keyword argument corresponding to this value. If unset this defaults to using the same value as \nlookup_field\n.\n\n\n\n\nPagination\n:\n\n\nThe following attributes are used to control pagination when used with list views.\n\n\n\n\npagination_class\n - The pagination class that should be used when paginating list results. Defaults to the same value as the \nDEFAULT_PAGINATION_CLASS\n setting, which is \n'rest_framework.pagination.PageNumberPagination'\n.\n\n\n\n\nNote that usage of the \npaginate_by\n, \npaginate_by_param\n and \npage_kwarg\n attributes are now pending deprecation. The \npagination_serializer_class\n attribute and \nDEFAULT_PAGINATION_SERIALIZER_CLASS\n setting have been removed completely. Pagination settings should instead be controlled by overriding a pagination class and setting any configuration attributes there. See the pagination documentation for more details.\n\n\nFiltering\n:\n\n\n\n\nfilter_backends\n - A list of filter backend classes that should be used for filtering the queryset. Defaults to the same value as the \nDEFAULT_FILTER_BACKENDS\n setting.\n\n\n\n\nMethods\n\n\nBase methods\n:\n\n\nget_queryset(self)\n\n\nReturns the queryset that should be used for list views, and that should be used as the base for lookups in detail views. Defaults to returning the queryset specified by the \nqueryset\n attribute.\n\n\nThis method should always be used rather than accessing \nself.queryset\n directly, as \nself.queryset\n gets evaluated only once, and those results are cached for all subsequent requests.\n\n\nMay be overridden to provide dynamic behavior, such as returning a queryset, that is specific to the user making the request.\n\n\nFor example:\n\n\ndef get_queryset(self):\n user = self.request.user\n return user.accounts.all()\n\n\n\nget_object(self)\n\n\nReturns an object instance that should be used for detail views. Defaults to using the \nlookup_field\n parameter to filter the base queryset.\n\n\nMay be overridden to provide more complex behavior, such as object lookups based on more than one URL kwarg.\n\n\nFor example:\n\n\ndef get_object(self):\n queryset = self.get_queryset()\n filter = {}\n for field in self.multiple_lookup_fields:\n filter[field] = self.kwargs[field]\n\n obj = get_object_or_404(queryset, **filter)\n self.check_object_permissions(self.request, obj)\n return obj\n\n\n\nNote that if your API doesn't include any object level permissions, you may optionally exclude the \nself.check_object_permissions\n, and simply return the object from the \nget_object_or_404\n lookup.\n\n\nfilter_queryset(self, queryset)\n\n\nGiven a queryset, filter it with whichever filter backends are in use, returning a new queryset. \n\n\nFor example: \n\n\ndef filter_queryset(self, queryset):\n filter_backends = (CategoryFilter,)\n\n if 'geo_route' in self.request.query_params:\n filter_backends = (GeoRouteFilter, CategoryFilter)\n elif 'geo_point' in self.request.query_params:\n filter_backends = (GeoPointFilter, CategoryFilter)\n\n for backend in list(filter_backends):\n queryset = backend().filter_queryset(self.request, queryset, view=self)\n\n return queryset\n\n\n\nget_serializer_class(self)\n\n\nReturns the class that should be used for the serializer. Defaults to returning the \nserializer_class\n attribute.\n\n\nMay be overridden to provide dynamic behavior, such as using different serializers for read and write operations, or providing different serializers to different types of users.\n\n\nFor example:\n\n\ndef get_serializer_class(self):\n if self.request.user.is_staff:\n return FullAccountSerializer\n return BasicAccountSerializer\n\n\n\nget_paginate_by(self)\n\n\nReturns the page size to use with pagination. By default this uses the \npaginate_by\n attribute, and may be overridden by the client if the \npaginate_by_param\n attribute is set.\n\n\nYou may want to override this method to provide more complex behavior, such as modifying page sizes based on the media type of the response.\n\n\nFor example:\n\n\ndef get_paginate_by(self):\n if self.request.accepted_renderer.format == 'html':\n return 20\n return 100\n\n\n\nSave and deletion hooks\n:\n\n\nThe following methods are provided by the mixin classes, and provide easy overriding of the object save or deletion behavior.\n\n\n\n\nperform_create(self, serializer)\n - Called by \nCreateModelMixin\n when saving a new object instance.\n\n\nperform_update(self, serializer)\n - Called by \nUpdateModelMixin\n when saving an existing object instance.\n\n\nperform_destroy(self, instance)\n - Called by \nDestroyModelMixin\n when deleting an object instance.\n\n\n\n\nThese hooks are particularly useful for setting attributes that are implicit in the request, but are not part of the request data. For instance, you might set an attribute on the object based on the request user, or based on a URL keyword argument.\n\n\ndef perform_create(self, serializer):\n serializer.save(user=self.request.user)\n\n\n\nThese override points are also particularly useful for adding behavior that occurs before or after saving an object, such as emailing a confirmation, or logging the update.\n\n\ndef perform_update(self, serializer):\n instance = serializer.save()\n send_email_confirmation(user=self.request.user, modified=instance)\n\n\n\nYou can also use these hooks to provide additional validation, by raising a \nValidationError()\n. This can be useful if you need some validation logic to apply at the point of database save. For example:\n\n\ndef perform_create(self, serializer):\n queryset = SignupRequest.objects.filter(user=self.request.user)\n if queryset.exists():\n raise ValidationError('You have already signed up')\n serializer.save(user=self.request.user)\n\n\n\nNote\n: These methods replace the old-style version 2.x \npre_save\n, \npost_save\n, \npre_delete\n and \npost_delete\n methods, which are no longer available.\n\n\nOther methods\n:\n\n\nYou won't typically need to override the following methods, although you might need to call into them if you're writing custom views using \nGenericAPIView\n.\n\n\n\n\nget_serializer_context(self)\n - Returns a dictionary containing any extra context that should be supplied to the serializer. Defaults to including \n'request'\n, \n'view'\n and \n'format'\n keys.\n\n\nget_serializer(self, instance=None, data=None, many=False, partial=False)\n - Returns a serializer instance.\n\n\nget_paginated_response(self, data)\n - Returns a paginated style \nResponse\n object.\n\n\npaginate_queryset(self, queryset)\n - Paginate a queryset if required, either returning a page object, or \nNone\n if pagination is not configured for this view.\n\n\nfilter_queryset(self, queryset)\n - Given a queryset, filter it with whichever filter backends are in use, returning a new queryset.\n\n\n\n\n\n\nMixins\n\n\nThe mixin classes provide the actions that are used to provide the basic view behavior. Note that the mixin classes provide action methods rather than defining the handler methods, such as \n.get()\n and \n.post()\n, directly. This allows for more flexible composition of behavior.\n\n\nThe mixin classes can be imported from \nrest_framework.mixins\n.\n\n\nListModelMixin\n\n\nProvides a \n.list(request, *args, **kwargs)\n method, that implements listing a queryset.\n\n\nIf the queryset is populated, this returns a \n200 OK\n response, with a serialized representation of the queryset as the body of the response. The response data may optionally be paginated.\n\n\nCreateModelMixin\n\n\nProvides a \n.create(request, *args, **kwargs)\n method, that implements creating and saving a new model instance.\n\n\nIf an object is created this returns a \n201 Created\n response, with a serialized representation of the object as the body of the response. If the representation contains a key named \nurl\n, then the \nLocation\n header of the response will be populated with that value.\n\n\nIf the request data provided for creating the object was invalid, a \n400 Bad Request\n response will be returned, with the error details as the body of the response.\n\n\nRetrieveModelMixin\n\n\nProvides a \n.retrieve(request, *args, **kwargs)\n method, that implements returning an existing model instance in a response.\n\n\nIf an object can be retrieved this returns a \n200 OK\n response, with a serialized representation of the object as the body of the response. Otherwise it will return a \n404 Not Found\n.\n\n\nUpdateModelMixin\n\n\nProvides a \n.update(request, *args, **kwargs)\n method, that implements updating and saving an existing model instance.\n\n\nAlso provides a \n.partial_update(request, *args, **kwargs)\n method, which is similar to the \nupdate\n method, except that all fields for the update will be optional. This allows support for HTTP \nPATCH\n requests.\n\n\nIf an object is updated this returns a \n200 OK\n response, with a serialized representation of the object as the body of the response.\n\n\nIf an object is created, for example when making a \nDELETE\n request followed by a \nPUT\n request to the same URL, this returns a \n201 Created\n response, with a serialized representation of the object as the body of the response.\n\n\nIf the request data provided for updating the object was invalid, a \n400 Bad Request\n response will be returned, with the error details as the body of the response.\n\n\nDestroyModelMixin\n\n\nProvides a \n.destroy(request, *args, **kwargs)\n method, that implements deletion of an existing model instance.\n\n\nIf an object is deleted this returns a \n204 No Content\n response, otherwise it will return a \n404 Not Found\n.\n\n\n\n\nConcrete View Classes\n\n\nThe following classes are the concrete generic views. If you're using generic views this is normally the level you'll be working at unless you need heavily customized behavior.\n\n\nThe view classes can be imported from \nrest_framework.generics\n.\n\n\nCreateAPIView\n\n\nUsed for \ncreate-only\n endpoints.\n\n\nProvides a \npost\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nCreateModelMixin\n\n\nListAPIView\n\n\nUsed for \nread-only\n endpoints to represent a \ncollection of model instances\n.\n\n\nProvides a \nget\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nListModelMixin\n\n\nRetrieveAPIView\n\n\nUsed for \nread-only\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides a \nget\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n\n\nDestroyAPIView\n\n\nUsed for \ndelete-only\n endpoints for a \nsingle model instance\n.\n\n\nProvides a \ndelete\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nDestroyModelMixin\n\n\nUpdateAPIView\n\n\nUsed for \nupdate-only\n endpoints for a \nsingle model instance\n.\n\n\nProvides \nput\n and \npatch\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nUpdateModelMixin\n\n\nListCreateAPIView\n\n\nUsed for \nread-write\n endpoints to represent a \ncollection of model instances\n.\n\n\nProvides \nget\n and \npost\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nListModelMixin\n, \nCreateModelMixin\n\n\nRetrieveUpdateAPIView\n\n\nUsed for \nread or update\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides \nget\n, \nput\n and \npatch\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n, \nUpdateModelMixin\n\n\nRetrieveDestroyAPIView\n\n\nUsed for \nread or delete\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides \nget\n and \ndelete\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n, \nDestroyModelMixin\n\n\nRetrieveUpdateDestroyAPIView\n\n\nUsed for \nread-write-delete\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides \nget\n, \nput\n, \npatch\n and \ndelete\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n, \nUpdateModelMixin\n, \nDestroyModelMixin\n\n\n\n\nCustomizing the generic views\n\n\nOften you'll want to use the existing generic views, but use some slightly customized behavior. If you find yourself reusing some bit of customized behavior in multiple places, you might want to refactor the behavior into a common class that you can then just apply to any view or viewset as needed.\n\n\nCreating custom mixins\n\n\nFor example, if you need to lookup objects based on multiple fields in the URL conf, you could create a mixin class like the following:\n\n\nclass MultipleFieldLookupMixin(object):\n \"\"\"\n Apply this mixin to any view or viewset to get multiple field filtering\n based on a `lookup_fields` attribute, instead of the default single field filtering.\n \"\"\"\n def get_object(self):\n queryset = self.get_queryset() # Get the base queryset\n queryset = self.filter_queryset(queryset) # Apply any filter backends\n filter = {}\n for field in self.lookup_fields:\n filter[field] = self.kwargs[field]\n return get_object_or_404(queryset, **filter) # Lookup the object\n\n\n\nYou can then simply apply this mixin to a view or viewset anytime you need to apply the custom behavior.\n\n\nclass RetrieveUserView(MultipleFieldLookupMixin, generics.RetrieveAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n lookup_fields = ('account', 'username')\n\n\n\nUsing custom mixins is a good option if you have custom behavior that needs to be used.\n\n\nCreating custom base classes\n\n\nIf you are using a mixin across multiple views, you can take this a step further and create your own set of base views that can then be used throughout your project. For example:\n\n\nclass BaseRetrieveView(MultipleFieldLookupMixin,\n generics.RetrieveAPIView):\n pass\n\nclass BaseRetrieveUpdateDestroyView(MultipleFieldLookupMixin,\n generics.RetrieveUpdateDestroyAPIView):\n pass\n\n\n\nUsing custom base classes is a good option if you have custom behavior that consistently needs to be repeated across a large number of views throughout your project.\n\n\n\n\nPUT as create\n\n\nPrior to version 3.0 the REST framework mixins treated \nPUT\n as either an update or a create operation, depending on if the object already existed or not.\n\n\nAllowing \nPUT\n as create operations is problematic, as it necessarily exposes information about the existence or non-existence of objects. It's also not obvious that transparently allowing re-creating of previously deleted instances is necessarily a better default behavior than simply returning \n404\n responses.\n\n\nBoth styles \"\nPUT\n as 404\" and \"\nPUT\n as create\" can be valid in different circumstances, but from version 3.0 onwards we now use 404 behavior as the default, due to it being simpler and more obvious.\n\n\nIf you need to generic PUT-as-create behavior you may want to include something like \nthis \nAllowPUTAsCreateMixin\n class\n as a mixin to your views.\n\n\n\n\nThird party packages\n\n\nThe following third party packages provide additional generic view implementations.\n\n\nDjango REST Framework bulk\n\n\nThe \ndjango-rest-framework-bulk package\n implements generic view mixins as well as some common concrete generic views to allow to apply bulk operations via API requests.\n\n\nDjango Rest Multiple Models\n\n\nDjango Rest Multiple Models\n provides a generic view (and mixin) for sending multiple serialized models and/or querysets via a single API request.",
+ "text": "Generic views\n\n\n\n\nDjango\u2019s generic views... were developed as a shortcut for common usage patterns... They take certain common idioms and patterns found in view development and abstract them so that you can quickly write common views of data without having to repeat yourself.\n\n\n \nDjango Documentation\n\n\n\n\nOne of the key benefits of class based views is the way they allow you to compose bits of reusable behavior. REST framework takes advantage of this by providing a number of pre-built views that provide for commonly used patterns.\n\n\nThe generic views provided by REST framework allow you to quickly build API views that map closely to your database models.\n\n\nIf the generic views don't suit the needs of your API, you can drop down to using the regular \nAPIView\n class, or reuse the mixins and base classes used by the generic views to compose your own set of reusable generic views.\n\n\nExamples\n\n\nTypically when using the generic views, you'll override the view, and set several class attributes.\n\n\nfrom django.contrib.auth.models import User\nfrom myapp.serializers import UserSerializer\nfrom rest_framework import generics\nfrom rest_framework.permissions import IsAdminUser\n\nclass UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n paginate_by = 100\n\n\n\nFor more complex cases you might also want to override various methods on the view class. For example.\n\n\nclass UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n\n def list(self, request):\n # Note the use of `get_queryset()` instead of `self.queryset`\n queryset = self.get_queryset()\n serializer = UserSerializer(queryset, many=True)\n return Response(serializer.data)\n\n\n\nFor very simple cases you might want to pass through any class attributes using the \n.as_view()\n method. For example, your URLconf might include something like the following entry:\n\n\nurl(r'^/users/', ListCreateAPIView.as_view(queryset=User.objects.all(), serializer_class=UserSerializer), name='user-list')\n\n\n\n\n\nAPI Reference\n\n\nGenericAPIView\n\n\nThis class extends REST framework's \nAPIView\n class, adding commonly required behavior for standard list and detail views.\n\n\nEach of the concrete generic views provided is built by combining \nGenericAPIView\n, with one or more mixin classes.\n\n\nAttributes\n\n\nBasic settings\n:\n\n\nThe following attributes control the basic view behavior.\n\n\n\n\nqueryset\n - The queryset that should be used for returning objects from this view. Typically, you must either set this attribute, or override the \nget_queryset()\n method. If you are overriding a view method, it is important that you call \nget_queryset()\n instead of accessing this property directly, as \nqueryset\n will get evaluated once, and those results will be cached for all subsequent requests.\n\n\nserializer_class\n - The serializer class that should be used for validating and deserializing input, and for serializing output. Typically, you must either set this attribute, or override the \nget_serializer_class()\n method.\n\n\nlookup_field\n - The model field that should be used to for performing object lookup of individual model instances. Defaults to \n'pk'\n. Note that when using hyperlinked APIs you'll need to ensure that \nboth\n the API views \nand\n the serializer classes set the lookup fields if you need to use a custom value.\n\n\nlookup_url_kwarg\n - The URL keyword argument that should be used for object lookup. The URL conf should include a keyword argument corresponding to this value. If unset this defaults to using the same value as \nlookup_field\n.\n\n\n\n\nPagination\n:\n\n\nThe following attributes are used to control pagination when used with list views.\n\n\n\n\npagination_class\n - The pagination class that should be used when paginating list results. Defaults to the same value as the \nDEFAULT_PAGINATION_CLASS\n setting, which is \n'rest_framework.pagination.PageNumberPagination'\n.\n\n\n\n\nNote that usage of the \npaginate_by\n, \npaginate_by_param\n and \npage_kwarg\n attributes are now pending deprecation. The \npagination_serializer_class\n attribute and \nDEFAULT_PAGINATION_SERIALIZER_CLASS\n setting have been removed completely. Pagination settings should instead be controlled by overriding a pagination class and setting any configuration attributes there. See the pagination documentation for more details.\n\n\nFiltering\n:\n\n\n\n\nfilter_backends\n - A list of filter backend classes that should be used for filtering the queryset. Defaults to the same value as the \nDEFAULT_FILTER_BACKENDS\n setting.\n\n\n\n\nMethods\n\n\nBase methods\n:\n\n\nget_queryset(self)\n\n\nReturns the queryset that should be used for list views, and that should be used as the base for lookups in detail views. Defaults to returning the queryset specified by the \nqueryset\n attribute.\n\n\nThis method should always be used rather than accessing \nself.queryset\n directly, as \nself.queryset\n gets evaluated only once, and those results are cached for all subsequent requests.\n\n\nMay be overridden to provide dynamic behavior, such as returning a queryset, that is specific to the user making the request.\n\n\nFor example:\n\n\ndef get_queryset(self):\n user = self.request.user\n return user.accounts.all()\n\n\n\nget_object(self)\n\n\nReturns an object instance that should be used for detail views. Defaults to using the \nlookup_field\n parameter to filter the base queryset.\n\n\nMay be overridden to provide more complex behavior, such as object lookups based on more than one URL kwarg.\n\n\nFor example:\n\n\ndef get_object(self):\n queryset = self.get_queryset()\n filter = {}\n for field in self.multiple_lookup_fields:\n filter[field] = self.kwargs[field]\n\n obj = get_object_or_404(queryset, **filter)\n self.check_object_permissions(self.request, obj)\n return obj\n\n\n\nNote that if your API doesn't include any object level permissions, you may optionally exclude the \nself.check_object_permissions\n, and simply return the object from the \nget_object_or_404\n lookup.\n\n\nfilter_queryset(self, queryset)\n\n\nGiven a queryset, filter it with whichever filter backends are in use, returning a new queryset. \n\n\nFor example: \n\n\ndef filter_queryset(self, queryset):\n filter_backends = (CategoryFilter,)\n\n if 'geo_route' in self.request.query_params:\n filter_backends = (GeoRouteFilter, CategoryFilter)\n elif 'geo_point' in self.request.query_params:\n filter_backends = (GeoPointFilter, CategoryFilter)\n\n for backend in list(filter_backends):\n queryset = backend().filter_queryset(self.request, queryset, view=self)\n\n return queryset\n\n\n\nget_serializer_class(self)\n\n\nReturns the class that should be used for the serializer. Defaults to returning the \nserializer_class\n attribute.\n\n\nMay be overridden to provide dynamic behavior, such as using different serializers for read and write operations, or providing different serializers to different types of users.\n\n\nFor example:\n\n\ndef get_serializer_class(self):\n if self.request.user.is_staff:\n return FullAccountSerializer\n return BasicAccountSerializer\n\n\n\nSave and deletion hooks\n:\n\n\nThe following methods are provided by the mixin classes, and provide easy overriding of the object save or deletion behavior.\n\n\n\n\nperform_create(self, serializer)\n - Called by \nCreateModelMixin\n when saving a new object instance.\n\n\nperform_update(self, serializer)\n - Called by \nUpdateModelMixin\n when saving an existing object instance.\n\n\nperform_destroy(self, instance)\n - Called by \nDestroyModelMixin\n when deleting an object instance.\n\n\n\n\nThese hooks are particularly useful for setting attributes that are implicit in the request, but are not part of the request data. For instance, you might set an attribute on the object based on the request user, or based on a URL keyword argument.\n\n\ndef perform_create(self, serializer):\n serializer.save(user=self.request.user)\n\n\n\nThese override points are also particularly useful for adding behavior that occurs before or after saving an object, such as emailing a confirmation, or logging the update.\n\n\ndef perform_update(self, serializer):\n instance = serializer.save()\n send_email_confirmation(user=self.request.user, modified=instance)\n\n\n\nYou can also use these hooks to provide additional validation, by raising a \nValidationError()\n. This can be useful if you need some validation logic to apply at the point of database save. For example:\n\n\ndef perform_create(self, serializer):\n queryset = SignupRequest.objects.filter(user=self.request.user)\n if queryset.exists():\n raise ValidationError('You have already signed up')\n serializer.save(user=self.request.user)\n\n\n\nNote\n: These methods replace the old-style version 2.x \npre_save\n, \npost_save\n, \npre_delete\n and \npost_delete\n methods, which are no longer available.\n\n\nOther methods\n:\n\n\nYou won't typically need to override the following methods, although you might need to call into them if you're writing custom views using \nGenericAPIView\n.\n\n\n\n\nget_serializer_context(self)\n - Returns a dictionary containing any extra context that should be supplied to the serializer. Defaults to including \n'request'\n, \n'view'\n and \n'format'\n keys.\n\n\nget_serializer(self, instance=None, data=None, many=False, partial=False)\n - Returns a serializer instance.\n\n\nget_paginated_response(self, data)\n - Returns a paginated style \nResponse\n object.\n\n\npaginate_queryset(self, queryset)\n - Paginate a queryset if required, either returning a page object, or \nNone\n if pagination is not configured for this view.\n\n\nfilter_queryset(self, queryset)\n - Given a queryset, filter it with whichever filter backends are in use, returning a new queryset.\n\n\n\n\n\n\nMixins\n\n\nThe mixin classes provide the actions that are used to provide the basic view behavior. Note that the mixin classes provide action methods rather than defining the handler methods, such as \n.get()\n and \n.post()\n, directly. This allows for more flexible composition of behavior.\n\n\nThe mixin classes can be imported from \nrest_framework.mixins\n.\n\n\nListModelMixin\n\n\nProvides a \n.list(request, *args, **kwargs)\n method, that implements listing a queryset.\n\n\nIf the queryset is populated, this returns a \n200 OK\n response, with a serialized representation of the queryset as the body of the response. The response data may optionally be paginated.\n\n\nCreateModelMixin\n\n\nProvides a \n.create(request, *args, **kwargs)\n method, that implements creating and saving a new model instance.\n\n\nIf an object is created this returns a \n201 Created\n response, with a serialized representation of the object as the body of the response. If the representation contains a key named \nurl\n, then the \nLocation\n header of the response will be populated with that value.\n\n\nIf the request data provided for creating the object was invalid, a \n400 Bad Request\n response will be returned, with the error details as the body of the response.\n\n\nRetrieveModelMixin\n\n\nProvides a \n.retrieve(request, *args, **kwargs)\n method, that implements returning an existing model instance in a response.\n\n\nIf an object can be retrieved this returns a \n200 OK\n response, with a serialized representation of the object as the body of the response. Otherwise it will return a \n404 Not Found\n.\n\n\nUpdateModelMixin\n\n\nProvides a \n.update(request, *args, **kwargs)\n method, that implements updating and saving an existing model instance.\n\n\nAlso provides a \n.partial_update(request, *args, **kwargs)\n method, which is similar to the \nupdate\n method, except that all fields for the update will be optional. This allows support for HTTP \nPATCH\n requests.\n\n\nIf an object is updated this returns a \n200 OK\n response, with a serialized representation of the object as the body of the response.\n\n\nIf an object is created, for example when making a \nDELETE\n request followed by a \nPUT\n request to the same URL, this returns a \n201 Created\n response, with a serialized representation of the object as the body of the response.\n\n\nIf the request data provided for updating the object was invalid, a \n400 Bad Request\n response will be returned, with the error details as the body of the response.\n\n\nDestroyModelMixin\n\n\nProvides a \n.destroy(request, *args, **kwargs)\n method, that implements deletion of an existing model instance.\n\n\nIf an object is deleted this returns a \n204 No Content\n response, otherwise it will return a \n404 Not Found\n.\n\n\n\n\nConcrete View Classes\n\n\nThe following classes are the concrete generic views. If you're using generic views this is normally the level you'll be working at unless you need heavily customized behavior.\n\n\nThe view classes can be imported from \nrest_framework.generics\n.\n\n\nCreateAPIView\n\n\nUsed for \ncreate-only\n endpoints.\n\n\nProvides a \npost\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nCreateModelMixin\n\n\nListAPIView\n\n\nUsed for \nread-only\n endpoints to represent a \ncollection of model instances\n.\n\n\nProvides a \nget\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nListModelMixin\n\n\nRetrieveAPIView\n\n\nUsed for \nread-only\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides a \nget\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n\n\nDestroyAPIView\n\n\nUsed for \ndelete-only\n endpoints for a \nsingle model instance\n.\n\n\nProvides a \ndelete\n method handler.\n\n\nExtends: \nGenericAPIView\n, \nDestroyModelMixin\n\n\nUpdateAPIView\n\n\nUsed for \nupdate-only\n endpoints for a \nsingle model instance\n.\n\n\nProvides \nput\n and \npatch\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nUpdateModelMixin\n\n\nListCreateAPIView\n\n\nUsed for \nread-write\n endpoints to represent a \ncollection of model instances\n.\n\n\nProvides \nget\n and \npost\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nListModelMixin\n, \nCreateModelMixin\n\n\nRetrieveUpdateAPIView\n\n\nUsed for \nread or update\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides \nget\n, \nput\n and \npatch\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n, \nUpdateModelMixin\n\n\nRetrieveDestroyAPIView\n\n\nUsed for \nread or delete\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides \nget\n and \ndelete\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n, \nDestroyModelMixin\n\n\nRetrieveUpdateDestroyAPIView\n\n\nUsed for \nread-write-delete\n endpoints to represent a \nsingle model instance\n.\n\n\nProvides \nget\n, \nput\n, \npatch\n and \ndelete\n method handlers.\n\n\nExtends: \nGenericAPIView\n, \nRetrieveModelMixin\n, \nUpdateModelMixin\n, \nDestroyModelMixin\n\n\n\n\nCustomizing the generic views\n\n\nOften you'll want to use the existing generic views, but use some slightly customized behavior. If you find yourself reusing some bit of customized behavior in multiple places, you might want to refactor the behavior into a common class that you can then just apply to any view or viewset as needed.\n\n\nCreating custom mixins\n\n\nFor example, if you need to lookup objects based on multiple fields in the URL conf, you could create a mixin class like the following:\n\n\nclass MultipleFieldLookupMixin(object):\n \"\"\"\n Apply this mixin to any view or viewset to get multiple field filtering\n based on a `lookup_fields` attribute, instead of the default single field filtering.\n \"\"\"\n def get_object(self):\n queryset = self.get_queryset() # Get the base queryset\n queryset = self.filter_queryset(queryset) # Apply any filter backends\n filter = {}\n for field in self.lookup_fields:\n filter[field] = self.kwargs[field]\n return get_object_or_404(queryset, **filter) # Lookup the object\n\n\n\nYou can then simply apply this mixin to a view or viewset anytime you need to apply the custom behavior.\n\n\nclass RetrieveUserView(MultipleFieldLookupMixin, generics.RetrieveAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n lookup_fields = ('account', 'username')\n\n\n\nUsing custom mixins is a good option if you have custom behavior that needs to be used.\n\n\nCreating custom base classes\n\n\nIf you are using a mixin across multiple views, you can take this a step further and create your own set of base views that can then be used throughout your project. For example:\n\n\nclass BaseRetrieveView(MultipleFieldLookupMixin,\n generics.RetrieveAPIView):\n pass\n\nclass BaseRetrieveUpdateDestroyView(MultipleFieldLookupMixin,\n generics.RetrieveUpdateDestroyAPIView):\n pass\n\n\n\nUsing custom base classes is a good option if you have custom behavior that consistently needs to be repeated across a large number of views throughout your project.\n\n\n\n\nPUT as create\n\n\nPrior to version 3.0 the REST framework mixins treated \nPUT\n as either an update or a create operation, depending on if the object already existed or not.\n\n\nAllowing \nPUT\n as create operations is problematic, as it necessarily exposes information about the existence or non-existence of objects. It's also not obvious that transparently allowing re-creating of previously deleted instances is necessarily a better default behavior than simply returning \n404\n responses.\n\n\nBoth styles \"\nPUT\n as 404\" and \"\nPUT\n as create\" can be valid in different circumstances, but from version 3.0 onwards we now use 404 behavior as the default, due to it being simpler and more obvious.\n\n\nIf you need to generic PUT-as-create behavior you may want to include something like \nthis \nAllowPUTAsCreateMixin\n class\n as a mixin to your views.\n\n\n\n\nThird party packages\n\n\nThe following third party packages provide additional generic view implementations.\n\n\nDjango REST Framework bulk\n\n\nThe \ndjango-rest-framework-bulk package\n implements generic view mixins as well as some common concrete generic views to allow to apply bulk operations via API requests.\n\n\nDjango Rest Multiple Models\n\n\nDjango Rest Multiple Models\n provides a generic view (and mixin) for sending multiple serialized models and/or querysets via a single API request.",
"title": "Generic views"
},
{
@@ -587,7 +587,7 @@
},
{
"location": "/api-guide/generic-views/#examples",
- "text": "Typically when using the generic views, you'll override the view, and set several class attributes. from django.contrib.auth.models import User\nfrom myapp.serializers import UserSerializer\nfrom rest_framework import generics\nfrom rest_framework.permissions import IsAdminUser\n\nclass UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n paginate_by = 100 For more complex cases you might also want to override various methods on the view class. For example. class UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n\n def get_paginate_by(self):\n \"\"\"\n Use smaller pagination for HTML representations.\n \"\"\"\n if self.request.accepted_renderer.format == 'html':\n return 20\n return 100\n\n def list(self, request):\n # Note the use of `get_queryset()` instead of `self.queryset`\n queryset = self.get_queryset()\n serializer = UserSerializer(queryset, many=True)\n return Response(serializer.data) For very simple cases you might want to pass through any class attributes using the .as_view() method. For example, your URLconf might include something like the following entry: url(r'^/users/', ListCreateAPIView.as_view(queryset=User.objects.all(), serializer_class=UserSerializer), name='user-list')",
+ "text": "Typically when using the generic views, you'll override the view, and set several class attributes. from django.contrib.auth.models import User\nfrom myapp.serializers import UserSerializer\nfrom rest_framework import generics\nfrom rest_framework.permissions import IsAdminUser\n\nclass UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n paginate_by = 100 For more complex cases you might also want to override various methods on the view class. For example. class UserList(generics.ListCreateAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n permission_classes = (IsAdminUser,)\n\n def list(self, request):\n # Note the use of `get_queryset()` instead of `self.queryset`\n queryset = self.get_queryset()\n serializer = UserSerializer(queryset, many=True)\n return Response(serializer.data) For very simple cases you might want to pass through any class attributes using the .as_view() method. For example, your URLconf might include something like the following entry: url(r'^/users/', ListCreateAPIView.as_view(queryset=User.objects.all(), serializer_class=UserSerializer), name='user-list')",
"title": "Examples"
},
{
@@ -597,7 +597,7 @@
},
{
"location": "/api-guide/generic-views/#genericapiview",
- "text": "This class extends REST framework's APIView class, adding commonly required behavior for standard list and detail views. Each of the concrete generic views provided is built by combining GenericAPIView , with one or more mixin classes. Attributes Basic settings : The following attributes control the basic view behavior. queryset - The queryset that should be used for returning objects from this view. Typically, you must either set this attribute, or override the get_queryset() method. If you are overriding a view method, it is important that you call get_queryset() instead of accessing this property directly, as queryset will get evaluated once, and those results will be cached for all subsequent requests. serializer_class - The serializer class that should be used for validating and deserializing input, and for serializing output. Typically, you must either set this attribute, or override the get_serializer_class() method. lookup_field - The model field that should be used to for performing object lookup of individual model instances. Defaults to 'pk' . Note that when using hyperlinked APIs you'll need to ensure that both the API views and the serializer classes set the lookup fields if you need to use a custom value. lookup_url_kwarg - The URL keyword argument that should be used for object lookup. The URL conf should include a keyword argument corresponding to this value. If unset this defaults to using the same value as lookup_field . Pagination : The following attributes are used to control pagination when used with list views. pagination_class - The pagination class that should be used when paginating list results. Defaults to the same value as the DEFAULT_PAGINATION_CLASS setting, which is 'rest_framework.pagination.PageNumberPagination' . Note that usage of the paginate_by , paginate_by_param and page_kwarg attributes are now pending deprecation. The pagination_serializer_class attribute and DEFAULT_PAGINATION_SERIALIZER_CLASS setting have been removed completely. Pagination settings should instead be controlled by overriding a pagination class and setting any configuration attributes there. See the pagination documentation for more details. Filtering : filter_backends - A list of filter backend classes that should be used for filtering the queryset. Defaults to the same value as the DEFAULT_FILTER_BACKENDS setting. Methods Base methods : get_queryset(self) Returns the queryset that should be used for list views, and that should be used as the base for lookups in detail views. Defaults to returning the queryset specified by the queryset attribute. This method should always be used rather than accessing self.queryset directly, as self.queryset gets evaluated only once, and those results are cached for all subsequent requests. May be overridden to provide dynamic behavior, such as returning a queryset, that is specific to the user making the request. For example: def get_queryset(self):\n user = self.request.user\n return user.accounts.all() get_object(self) Returns an object instance that should be used for detail views. Defaults to using the lookup_field parameter to filter the base queryset. May be overridden to provide more complex behavior, such as object lookups based on more than one URL kwarg. For example: def get_object(self):\n queryset = self.get_queryset()\n filter = {}\n for field in self.multiple_lookup_fields:\n filter[field] = self.kwargs[field]\n\n obj = get_object_or_404(queryset, **filter)\n self.check_object_permissions(self.request, obj)\n return obj Note that if your API doesn't include any object level permissions, you may optionally exclude the self.check_object_permissions , and simply return the object from the get_object_or_404 lookup. filter_queryset(self, queryset) Given a queryset, filter it with whichever filter backends are in use, returning a new queryset. For example: def filter_queryset(self, queryset):\n filter_backends = (CategoryFilter,)\n\n if 'geo_route' in self.request.query_params:\n filter_backends = (GeoRouteFilter, CategoryFilter)\n elif 'geo_point' in self.request.query_params:\n filter_backends = (GeoPointFilter, CategoryFilter)\n\n for backend in list(filter_backends):\n queryset = backend().filter_queryset(self.request, queryset, view=self)\n\n return queryset get_serializer_class(self) Returns the class that should be used for the serializer. Defaults to returning the serializer_class attribute. May be overridden to provide dynamic behavior, such as using different serializers for read and write operations, or providing different serializers to different types of users. For example: def get_serializer_class(self):\n if self.request.user.is_staff:\n return FullAccountSerializer\n return BasicAccountSerializer get_paginate_by(self) Returns the page size to use with pagination. By default this uses the paginate_by attribute, and may be overridden by the client if the paginate_by_param attribute is set. You may want to override this method to provide more complex behavior, such as modifying page sizes based on the media type of the response. For example: def get_paginate_by(self):\n if self.request.accepted_renderer.format == 'html':\n return 20\n return 100 Save and deletion hooks : The following methods are provided by the mixin classes, and provide easy overriding of the object save or deletion behavior. perform_create(self, serializer) - Called by CreateModelMixin when saving a new object instance. perform_update(self, serializer) - Called by UpdateModelMixin when saving an existing object instance. perform_destroy(self, instance) - Called by DestroyModelMixin when deleting an object instance. These hooks are particularly useful for setting attributes that are implicit in the request, but are not part of the request data. For instance, you might set an attribute on the object based on the request user, or based on a URL keyword argument. def perform_create(self, serializer):\n serializer.save(user=self.request.user) These override points are also particularly useful for adding behavior that occurs before or after saving an object, such as emailing a confirmation, or logging the update. def perform_update(self, serializer):\n instance = serializer.save()\n send_email_confirmation(user=self.request.user, modified=instance) You can also use these hooks to provide additional validation, by raising a ValidationError() . This can be useful if you need some validation logic to apply at the point of database save. For example: def perform_create(self, serializer):\n queryset = SignupRequest.objects.filter(user=self.request.user)\n if queryset.exists():\n raise ValidationError('You have already signed up')\n serializer.save(user=self.request.user) Note : These methods replace the old-style version 2.x pre_save , post_save , pre_delete and post_delete methods, which are no longer available. Other methods : You won't typically need to override the following methods, although you might need to call into them if you're writing custom views using GenericAPIView . get_serializer_context(self) - Returns a dictionary containing any extra context that should be supplied to the serializer. Defaults to including 'request' , 'view' and 'format' keys. get_serializer(self, instance=None, data=None, many=False, partial=False) - Returns a serializer instance. get_paginated_response(self, data) - Returns a paginated style Response object. paginate_queryset(self, queryset) - Paginate a queryset if required, either returning a page object, or None if pagination is not configured for this view. filter_queryset(self, queryset) - Given a queryset, filter it with whichever filter backends are in use, returning a new queryset.",
+ "text": "This class extends REST framework's APIView class, adding commonly required behavior for standard list and detail views. Each of the concrete generic views provided is built by combining GenericAPIView , with one or more mixin classes. Attributes Basic settings : The following attributes control the basic view behavior. queryset - The queryset that should be used for returning objects from this view. Typically, you must either set this attribute, or override the get_queryset() method. If you are overriding a view method, it is important that you call get_queryset() instead of accessing this property directly, as queryset will get evaluated once, and those results will be cached for all subsequent requests. serializer_class - The serializer class that should be used for validating and deserializing input, and for serializing output. Typically, you must either set this attribute, or override the get_serializer_class() method. lookup_field - The model field that should be used to for performing object lookup of individual model instances. Defaults to 'pk' . Note that when using hyperlinked APIs you'll need to ensure that both the API views and the serializer classes set the lookup fields if you need to use a custom value. lookup_url_kwarg - The URL keyword argument that should be used for object lookup. The URL conf should include a keyword argument corresponding to this value. If unset this defaults to using the same value as lookup_field . Pagination : The following attributes are used to control pagination when used with list views. pagination_class - The pagination class that should be used when paginating list results. Defaults to the same value as the DEFAULT_PAGINATION_CLASS setting, which is 'rest_framework.pagination.PageNumberPagination' . Note that usage of the paginate_by , paginate_by_param and page_kwarg attributes are now pending deprecation. The pagination_serializer_class attribute and DEFAULT_PAGINATION_SERIALIZER_CLASS setting have been removed completely. Pagination settings should instead be controlled by overriding a pagination class and setting any configuration attributes there. See the pagination documentation for more details. Filtering : filter_backends - A list of filter backend classes that should be used for filtering the queryset. Defaults to the same value as the DEFAULT_FILTER_BACKENDS setting. Methods Base methods : get_queryset(self) Returns the queryset that should be used for list views, and that should be used as the base for lookups in detail views. Defaults to returning the queryset specified by the queryset attribute. This method should always be used rather than accessing self.queryset directly, as self.queryset gets evaluated only once, and those results are cached for all subsequent requests. May be overridden to provide dynamic behavior, such as returning a queryset, that is specific to the user making the request. For example: def get_queryset(self):\n user = self.request.user\n return user.accounts.all() get_object(self) Returns an object instance that should be used for detail views. Defaults to using the lookup_field parameter to filter the base queryset. May be overridden to provide more complex behavior, such as object lookups based on more than one URL kwarg. For example: def get_object(self):\n queryset = self.get_queryset()\n filter = {}\n for field in self.multiple_lookup_fields:\n filter[field] = self.kwargs[field]\n\n obj = get_object_or_404(queryset, **filter)\n self.check_object_permissions(self.request, obj)\n return obj Note that if your API doesn't include any object level permissions, you may optionally exclude the self.check_object_permissions , and simply return the object from the get_object_or_404 lookup. filter_queryset(self, queryset) Given a queryset, filter it with whichever filter backends are in use, returning a new queryset. For example: def filter_queryset(self, queryset):\n filter_backends = (CategoryFilter,)\n\n if 'geo_route' in self.request.query_params:\n filter_backends = (GeoRouteFilter, CategoryFilter)\n elif 'geo_point' in self.request.query_params:\n filter_backends = (GeoPointFilter, CategoryFilter)\n\n for backend in list(filter_backends):\n queryset = backend().filter_queryset(self.request, queryset, view=self)\n\n return queryset get_serializer_class(self) Returns the class that should be used for the serializer. Defaults to returning the serializer_class attribute. May be overridden to provide dynamic behavior, such as using different serializers for read and write operations, or providing different serializers to different types of users. For example: def get_serializer_class(self):\n if self.request.user.is_staff:\n return FullAccountSerializer\n return BasicAccountSerializer Save and deletion hooks : The following methods are provided by the mixin classes, and provide easy overriding of the object save or deletion behavior. perform_create(self, serializer) - Called by CreateModelMixin when saving a new object instance. perform_update(self, serializer) - Called by UpdateModelMixin when saving an existing object instance. perform_destroy(self, instance) - Called by DestroyModelMixin when deleting an object instance. These hooks are particularly useful for setting attributes that are implicit in the request, but are not part of the request data. For instance, you might set an attribute on the object based on the request user, or based on a URL keyword argument. def perform_create(self, serializer):\n serializer.save(user=self.request.user) These override points are also particularly useful for adding behavior that occurs before or after saving an object, such as emailing a confirmation, or logging the update. def perform_update(self, serializer):\n instance = serializer.save()\n send_email_confirmation(user=self.request.user, modified=instance) You can also use these hooks to provide additional validation, by raising a ValidationError() . This can be useful if you need some validation logic to apply at the point of database save. For example: def perform_create(self, serializer):\n queryset = SignupRequest.objects.filter(user=self.request.user)\n if queryset.exists():\n raise ValidationError('You have already signed up')\n serializer.save(user=self.request.user) Note : These methods replace the old-style version 2.x pre_save , post_save , pre_delete and post_delete methods, which are no longer available. Other methods : You won't typically need to override the following methods, although you might need to call into them if you're writing custom views using GenericAPIView . get_serializer_context(self) - Returns a dictionary containing any extra context that should be supplied to the serializer. Defaults to including 'request' , 'view' and 'format' keys. get_serializer(self, instance=None, data=None, many=False, partial=False) - Returns a serializer instance. get_paginated_response(self, data) - Returns a paginated style Response object. paginate_queryset(self, queryset) - Paginate a queryset if required, either returning a page object, or None if pagination is not configured for this view. filter_queryset(self, queryset) - Given a queryset, filter it with whichever filter backends are in use, returning a new queryset.",
"title": "GenericAPIView"
},
{
@@ -842,7 +842,7 @@
},
{
"location": "/api-guide/parsers/",
- "text": "Parsers\n\n\n\n\nMachine interacting web services tend to use more\nstructured formats for sending data than form-encoded, since they're\nsending more complex data than simple forms\n\n\n Malcom Tredinnick, \nDjango developers group\n\n\n\n\nREST framework includes a number of built in Parser classes, that allow you to accept requests with various media types. There is also support for defining your own custom parsers, which gives you the flexibility to design the media types that your API accepts.\n\n\nHow the parser is determined\n\n\nThe set of valid parsers for a view is always defined as a list of classes. When \nrequest.data\n is accessed, REST framework will examine the \nContent-Type\n header on the incoming request, and determine which parser to use to parse the request content.\n\n\n\n\nNote\n: When developing client applications always remember to make sure you're setting the \nContent-Type\n header when sending data in an HTTP request.\n\n\nIf you don't set the content type, most clients will default to using \n'application/x-www-form-urlencoded'\n, which may not be what you wanted.\n\n\nAs an example, if you are sending \njson\n encoded data using jQuery with the \n.ajax() method\n, you should make sure to include the \ncontentType: 'application/json'\n setting.\n\n\n\n\nSetting the parsers\n\n\nThe default set of parsers may be set globally, using the \nDEFAULT_PARSER_CLASSES\n setting. For example, the following settings would allow only requests with \nJSON\n content, instead of the default of JSON or form data.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework.parsers.JSONParser',\n )\n}\n\n\n\nYou can also set the parsers used for an individual view, or viewset,\nusing the \nAPIView\n class based views.\n\n\nfrom rest_framework.parsers import JSONParser\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\nclass ExampleView(APIView):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n parser_classes = (JSONParser,)\n\n def post(self, request, format=None):\n return Response({'received data': request.data})\n\n\n\nOr, if you're using the \n@api_view\n decorator with function based views.\n\n\n@api_view(['POST'])\n@parser_classes((JSONParser,))\ndef example_view(request, format=None):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n return Response({'received data': request.data})\n\n\n\n\n\nAPI Reference\n\n\nJSONParser\n\n\nParses \nJSON\n request content.\n\n\n.media_type\n: \napplication/json\n\n\nFormParser\n\n\nParses HTML form content. \nrequest.data\n will be populated with a \nQueryDict\n of data.\n\n\nYou will typically want to use both \nFormParser\n and \nMultiPartParser\n together in order to fully support HTML form data.\n\n\n.media_type\n: \napplication/x-www-form-urlencoded\n\n\nMultiPartParser\n\n\nParses multipart HTML form content, which supports file uploads. Both \nrequest.data\n will be populated with a \nQueryDict\n.\n\n\nYou will typically want to use both \nFormParser\n and \nMultiPartParser\n together in order to fully support HTML form data.\n\n\n.media_type\n: \nmultipart/form-data\n\n\nFileUploadParser\n\n\nParses raw file upload content. The \nrequest.data\n property will be a dictionary with a single key \n'file'\n containing the uploaded file.\n\n\nIf the view used with \nFileUploadParser\n is called with a \nfilename\n URL keyword argument, then that argument will be used as the filename. If it is called without a \nfilename\n URL keyword argument, then the client must set the filename in the \nContent-Disposition\n HTTP header. For example \nContent-Disposition: attachment; filename=upload.jpg\n.\n\n\n.media_type\n: \n*/*\n\n\nNotes:\n\n\n\n\nThe \nFileUploadParser\n is for usage with native clients that can upload the file as a raw data request. For web-based uploads, or for native clients with multipart upload support, you should use the \nMultiPartParser\n parser instead.\n\n\nSince this parser's \nmedia_type\n matches any content type, \nFileUploadParser\n should generally be the only parser set on an API view.\n\n\nFileUploadParser\n respects Django's standard \nFILE_UPLOAD_HANDLERS\n setting, and the \nrequest.upload_handlers\n attribute. See the \nDjango documentation\n for more details.\n\n\n\n\nBasic usage example:\n\n\nclass FileUploadView(views.APIView):\n parser_classes = (FileUploadParser,)\n\n def put(self, request, filename, format=None):\n file_obj = request.data['file']\n # ...\n # do some stuff with uploaded file\n # ...\n return Response(status=204)\n\n\n\n\n\nCustom parsers\n\n\nTo implement a custom parser, you should override \nBaseParser\n, set the \n.media_type\n property, and implement the \n.parse(self, stream, media_type, parser_context)\n method.\n\n\nThe method should return the data that will be used to populate the \nrequest.data\n property.\n\n\nThe arguments passed to \n.parse()\n are:\n\n\nstream\n\n\nA stream-like object representing the body of the request.\n\n\nmedia_type\n\n\nOptional. If provided, this is the media type of the incoming request content.\n\n\nDepending on the request's \nContent-Type:\n header, this may be more specific than the renderer's \nmedia_type\n attribute, and may include media type parameters. For example \n\"text/plain; charset=utf-8\"\n.\n\n\nparser_context\n\n\nOptional. If supplied, this argument will be a dictionary containing any additional context that may be required to parse the request content.\n\n\nBy default this will include the following keys: \nview\n, \nrequest\n, \nargs\n, \nkwargs\n.\n\n\nExample\n\n\nThe following is an example plaintext parser that will populate the \nrequest.data\n property with a string representing the body of the request.\n\n\nclass PlainTextParser(BaseParser):\n \"\"\"\n Plain text parser.\n \"\"\"\n media_type = 'text/plain'\n\n def parse(self, stream, media_type=None, parser_context=None):\n \"\"\"\n Simply return a string representing the body of the request.\n \"\"\"\n return stream.read()\n\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nYAML\n\n\nREST framework YAML\n provides \nYAML\n parsing and rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-yaml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_yaml.parsers.YAMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_yaml.renderers.YAMLRenderer',\n ),\n}\n\n\n\nXML\n\n\nREST Framework XML\n provides a simple informal XML format. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-xml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_xml.parsers.XMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_xml.renderers.XMLRenderer',\n ),\n}\n\n\n\nMessagePack\n\n\nMessagePack\n is a fast, efficient binary serialization format. \nJuan Riaza\n maintains the \ndjangorestframework-msgpack\n package which provides MessagePack renderer and parser support for REST framework.\n\n\nCamelCase JSON\n\n\ndjangorestframework-camel-case\n provides camel case JSON renderers and parsers for REST framework. This allows serializers to use Python-style underscored field names, but be exposed in the API as Javascript-style camel case field names. It is maintained by \nVitaly Babiy\n.",
+ "text": "Parsers\n\n\n\n\nMachine interacting web services tend to use more\nstructured formats for sending data than form-encoded, since they're\nsending more complex data than simple forms\n\n\n Malcom Tredinnick, \nDjango developers group\n\n\n\n\nREST framework includes a number of built in Parser classes, that allow you to accept requests with various media types. There is also support for defining your own custom parsers, which gives you the flexibility to design the media types that your API accepts.\n\n\nHow the parser is determined\n\n\nThe set of valid parsers for a view is always defined as a list of classes. When \nrequest.data\n is accessed, REST framework will examine the \nContent-Type\n header on the incoming request, and determine which parser to use to parse the request content.\n\n\n\n\nNote\n: When developing client applications always remember to make sure you're setting the \nContent-Type\n header when sending data in an HTTP request.\n\n\nIf you don't set the content type, most clients will default to using \n'application/x-www-form-urlencoded'\n, which may not be what you wanted.\n\n\nAs an example, if you are sending \njson\n encoded data using jQuery with the \n.ajax() method\n, you should make sure to include the \ncontentType: 'application/json'\n setting.\n\n\n\n\nSetting the parsers\n\n\nThe default set of parsers may be set globally, using the \nDEFAULT_PARSER_CLASSES\n setting. For example, the following settings would allow only requests with \nJSON\n content, instead of the default of JSON or form data.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework.parsers.JSONParser',\n )\n}\n\n\n\nYou can also set the parsers used for an individual view, or viewset,\nusing the \nAPIView\n class based views.\n\n\nfrom rest_framework.parsers import JSONParser\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\nclass ExampleView(APIView):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n parser_classes = (JSONParser,)\n\n def post(self, request, format=None):\n return Response({'received data': request.data})\n\n\n\nOr, if you're using the \n@api_view\n decorator with function based views.\n\n\nfrom rest_framework.decorators import api_view\nfrom rest_framework.decorators import parser_classes\n\n@api_view(['POST'])\n@parser_classes((JSONParser,))\ndef example_view(request, format=None):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n return Response({'received data': request.data})\n\n\n\n\n\nAPI Reference\n\n\nJSONParser\n\n\nParses \nJSON\n request content.\n\n\n.media_type\n: \napplication/json\n\n\nFormParser\n\n\nParses HTML form content. \nrequest.data\n will be populated with a \nQueryDict\n of data.\n\n\nYou will typically want to use both \nFormParser\n and \nMultiPartParser\n together in order to fully support HTML form data.\n\n\n.media_type\n: \napplication/x-www-form-urlencoded\n\n\nMultiPartParser\n\n\nParses multipart HTML form content, which supports file uploads. Both \nrequest.data\n will be populated with a \nQueryDict\n.\n\n\nYou will typically want to use both \nFormParser\n and \nMultiPartParser\n together in order to fully support HTML form data.\n\n\n.media_type\n: \nmultipart/form-data\n\n\nFileUploadParser\n\n\nParses raw file upload content. The \nrequest.data\n property will be a dictionary with a single key \n'file'\n containing the uploaded file.\n\n\nIf the view used with \nFileUploadParser\n is called with a \nfilename\n URL keyword argument, then that argument will be used as the filename. If it is called without a \nfilename\n URL keyword argument, then the client must set the filename in the \nContent-Disposition\n HTTP header. For example \nContent-Disposition: attachment; filename=upload.jpg\n.\n\n\n.media_type\n: \n*/*\n\n\nNotes:\n\n\n\n\nThe \nFileUploadParser\n is for usage with native clients that can upload the file as a raw data request. For web-based uploads, or for native clients with multipart upload support, you should use the \nMultiPartParser\n parser instead.\n\n\nSince this parser's \nmedia_type\n matches any content type, \nFileUploadParser\n should generally be the only parser set on an API view.\n\n\nFileUploadParser\n respects Django's standard \nFILE_UPLOAD_HANDLERS\n setting, and the \nrequest.upload_handlers\n attribute. See the \nDjango documentation\n for more details.\n\n\n\n\nBasic usage example:\n\n\nclass FileUploadView(views.APIView):\n parser_classes = (FileUploadParser,)\n\n def put(self, request, filename, format=None):\n file_obj = request.data['file']\n # ...\n # do some stuff with uploaded file\n # ...\n return Response(status=204)\n\n\n\n\n\nCustom parsers\n\n\nTo implement a custom parser, you should override \nBaseParser\n, set the \n.media_type\n property, and implement the \n.parse(self, stream, media_type, parser_context)\n method.\n\n\nThe method should return the data that will be used to populate the \nrequest.data\n property.\n\n\nThe arguments passed to \n.parse()\n are:\n\n\nstream\n\n\nA stream-like object representing the body of the request.\n\n\nmedia_type\n\n\nOptional. If provided, this is the media type of the incoming request content.\n\n\nDepending on the request's \nContent-Type:\n header, this may be more specific than the renderer's \nmedia_type\n attribute, and may include media type parameters. For example \n\"text/plain; charset=utf-8\"\n.\n\n\nparser_context\n\n\nOptional. If supplied, this argument will be a dictionary containing any additional context that may be required to parse the request content.\n\n\nBy default this will include the following keys: \nview\n, \nrequest\n, \nargs\n, \nkwargs\n.\n\n\nExample\n\n\nThe following is an example plaintext parser that will populate the \nrequest.data\n property with a string representing the body of the request.\n\n\nclass PlainTextParser(BaseParser):\n \"\"\"\n Plain text parser.\n \"\"\"\n media_type = 'text/plain'\n\n def parse(self, stream, media_type=None, parser_context=None):\n \"\"\"\n Simply return a string representing the body of the request.\n \"\"\"\n return stream.read()\n\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nYAML\n\n\nREST framework YAML\n provides \nYAML\n parsing and rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-yaml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_yaml.parsers.YAMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_yaml.renderers.YAMLRenderer',\n ),\n}\n\n\n\nXML\n\n\nREST Framework XML\n provides a simple informal XML format. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-xml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_xml.parsers.XMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_xml.renderers.XMLRenderer',\n ),\n}\n\n\n\nMessagePack\n\n\nMessagePack\n is a fast, efficient binary serialization format. \nJuan Riaza\n maintains the \ndjangorestframework-msgpack\n package which provides MessagePack renderer and parser support for REST framework.\n\n\nCamelCase JSON\n\n\ndjangorestframework-camel-case\n provides camel case JSON renderers and parsers for REST framework. This allows serializers to use Python-style underscored field names, but be exposed in the API as Javascript-style camel case field names. It is maintained by \nVitaly Babiy\n.",
"title": "Parsers"
},
{
@@ -857,7 +857,7 @@
},
{
"location": "/api-guide/parsers/#setting-the-parsers",
- "text": "The default set of parsers may be set globally, using the DEFAULT_PARSER_CLASSES setting. For example, the following settings would allow only requests with JSON content, instead of the default of JSON or form data. REST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework.parsers.JSONParser',\n )\n} You can also set the parsers used for an individual view, or viewset,\nusing the APIView class based views. from rest_framework.parsers import JSONParser\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\nclass ExampleView(APIView):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n parser_classes = (JSONParser,)\n\n def post(self, request, format=None):\n return Response({'received data': request.data}) Or, if you're using the @api_view decorator with function based views. @api_view(['POST'])\n@parser_classes((JSONParser,))\ndef example_view(request, format=None):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n return Response({'received data': request.data})",
+ "text": "The default set of parsers may be set globally, using the DEFAULT_PARSER_CLASSES setting. For example, the following settings would allow only requests with JSON content, instead of the default of JSON or form data. REST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework.parsers.JSONParser',\n )\n} You can also set the parsers used for an individual view, or viewset,\nusing the APIView class based views. from rest_framework.parsers import JSONParser\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\nclass ExampleView(APIView):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n parser_classes = (JSONParser,)\n\n def post(self, request, format=None):\n return Response({'received data': request.data}) Or, if you're using the @api_view decorator with function based views. from rest_framework.decorators import api_view\nfrom rest_framework.decorators import parser_classes\n\n@api_view(['POST'])\n@parser_classes((JSONParser,))\ndef example_view(request, format=None):\n \"\"\"\n A view that can accept POST requests with JSON content.\n \"\"\"\n return Response({'received data': request.data})",
"title": "Setting the parsers"
},
{
@@ -922,7 +922,7 @@
},
{
"location": "/api-guide/renderers/",
- "text": "Renderers\n\n\n\n\nBefore a TemplateResponse instance can be returned to the client, it must be rendered. The rendering process takes the intermediate representation of template and context, and turns it into the final byte stream that can be served to the client.\n\n\n \nDjango documentation\n\n\n\n\nREST framework includes a number of built in Renderer classes, that allow you to return responses with various media types. There is also support for defining your own custom renderers, which gives you the flexibility to design your own media types.\n\n\nHow the renderer is determined\n\n\nThe set of valid renderers for a view is always defined as a list of classes. When a view is entered REST framework will perform content negotiation on the incoming request, and determine the most appropriate renderer to satisfy the request.\n\n\nThe basic process of content negotiation involves examining the request's \nAccept\n header, to determine which media types it expects in the response. Optionally, format suffixes on the URL may be used to explicitly request a particular representation. For example the URL \nhttp://example.com/api/users_count.json\n might be an endpoint that always returns JSON data.\n\n\nFor more information see the documentation on \ncontent negotiation\n.\n\n\nSetting the renderers\n\n\nThe default set of renderers may be set globally, using the \nDEFAULT_RENDERER_CLASSES\n setting. For example, the following settings would use \nJSON\n as the main media type and also include the self describing API.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework.renderers.JSONRenderer',\n 'rest_framework.renderers.BrowsableAPIRenderer',\n )\n}\n\n\n\nYou can also set the renderers used for an individual view, or viewset,\nusing the \nAPIView\n class based views.\n\n\nfrom django.contrib.auth.models import User\nfrom rest_framework.renderers import JSONRenderer\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\nclass UserCountView(APIView):\n \"\"\"\n A view that returns the count of active users in JSON.\n \"\"\"\n renderer_classes = (JSONRenderer, )\n\n def get(self, request, format=None):\n user_count = User.objects.filter(active=True).count()\n content = {'user_count': user_count}\n return Response(content)\n\n\n\nOr, if you're using the \n@api_view\n decorator with function based views.\n\n\n@api_view(['GET'])\n@renderer_classes((JSONRenderer,))\ndef user_count_view(request, format=None):\n \"\"\"\n A view that returns the count of active users in JSON.\n \"\"\"\n user_count = User.objects.filter(active=True).count()\n content = {'user_count': user_count}\n return Response(content)\n\n\n\nOrdering of renderer classes\n\n\nIt's important when specifying the renderer classes for your API to think about what priority you want to assign to each media type. If a client underspecifies the representations it can accept, such as sending an \nAccept: */*\n header, or not including an \nAccept\n header at all, then REST framework will select the first renderer in the list to use for the response.\n\n\nFor example if your API serves JSON responses and the HTML browsable API, you might want to make \nJSONRenderer\n your default renderer, in order to send \nJSON\n responses to clients that do not specify an \nAccept\n header.\n\n\nIf your API includes views that can serve both regular webpages and API responses depending on the request, then you might consider making \nTemplateHTMLRenderer\n your default renderer, in order to play nicely with older browsers that send \nbroken accept headers\n.\n\n\n\n\nAPI Reference\n\n\nJSONRenderer\n\n\nRenders the request data into \nJSON\n, using utf-8 encoding.\n\n\nNote that the default style is to include unicode characters, and render the response using a compact style with no unnecessary whitespace:\n\n\n{\"unicode black star\":\"\u2605\",\"value\":999}\n\n\n\nThe client may additionally include an \n'indent'\n media type parameter, in which case the returned \nJSON\n will be indented. For example \nAccept: application/json; indent=4\n.\n\n\n{\n \"unicode black star\": \"\u2605\",\n \"value\": 999\n}\n\n\n\nThe default JSON encoding style can be altered using the \nUNICODE_JSON\n and \nCOMPACT_JSON\n settings keys.\n\n\n.media_type\n: \napplication/json\n\n\n.format\n: \n'.json'\n\n\n.charset\n: \nNone\n\n\nTemplateHTMLRenderer\n\n\nRenders data to HTML, using Django's standard template rendering.\nUnlike other renderers, the data passed to the \nResponse\n does not need to be serialized. Also, unlike other renderers, you may want to include a \ntemplate_name\n argument when creating the \nResponse\n.\n\n\nThe TemplateHTMLRenderer will create a \nRequestContext\n, using the \nresponse.data\n as the context dict, and determine a template name to use to render the context.\n\n\nThe template name is determined by (in order of preference):\n\n\n\n\nAn explicit \ntemplate_name\n argument passed to the response.\n\n\nAn explicit \n.template_name\n attribute set on this class.\n\n\nThe return result of calling \nview.get_template_names()\n.\n\n\n\n\nAn example of a view that uses \nTemplateHTMLRenderer\n:\n\n\nclass UserDetail(generics.RetrieveAPIView):\n \"\"\"\n A view that returns a templated HTML representation of a given user.\n \"\"\"\n queryset = User.objects.all()\n renderer_classes = (TemplateHTMLRenderer,)\n\n def get(self, request, *args, **kwargs):\n self.object = self.get_object()\n return Response({'user': self.object}, template_name='user_detail.html')\n\n\n\nYou can use \nTemplateHTMLRenderer\n either to return regular HTML pages using REST framework, or to return both HTML and API responses from a single endpoint.\n\n\nIf you're building websites that use \nTemplateHTMLRenderer\n along with other renderer classes, you should consider listing \nTemplateHTMLRenderer\n as the first class in the \nrenderer_classes\n list, so that it will be prioritised first even for browsers that send poorly formed \nACCEPT:\n headers.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.html'\n\n\n.charset\n: \nutf-8\n\n\nSee also: \nStaticHTMLRenderer\n\n\nStaticHTMLRenderer\n\n\nA simple renderer that simply returns pre-rendered HTML. Unlike other renderers, the data passed to the response object should be a string representing the content to be returned.\n\n\nAn example of a view that uses \nStaticHTMLRenderer\n:\n\n\n@api_view(('GET',))\n@renderer_classes((StaticHTMLRenderer,))\ndef simple_html_view(request):\n data = '\nhtml\nbody\nh1\nHello, world\n/h1\n/body\n/html\n'\n return Response(data)\n\n\n\nYou can use \nStaticHTMLRenderer\n either to return regular HTML pages using REST framework, or to return both HTML and API responses from a single endpoint.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.html'\n\n\n.charset\n: \nutf-8\n\n\nSee also: \nTemplateHTMLRenderer\n\n\nBrowsableAPIRenderer\n\n\nRenders data into HTML for the Browsable API:\n\n\n\n\nThis renderer will determine which other renderer would have been given highest priority, and use that to display an API style response within the HTML page.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.api'\n\n\n.charset\n: \nutf-8\n\n\n.template\n: \n'rest_framework/api.html'\n\n\nCustomizing BrowsableAPIRenderer\n\n\nBy default the response content will be rendered with the highest priority renderer apart from \nBrowsableAPIRenderer\n. If you need to customize this behavior, for example to use HTML as the default return format, but use JSON in the browsable API, you can do so by overriding the \nget_default_renderer()\n method. For example:\n\n\nclass CustomBrowsableAPIRenderer(BrowsableAPIRenderer):\n def get_default_renderer(self, view):\n return JSONRenderer()\n\n\n\nAdminRenderer\n\n\nRenders data into HTML for an admin-like display:\n\n\n\n\nThis renderer is suitable for CRUD-style web APIs that should also present a user-friendly interface for managing the data.\n\n\nNote that views that have nested or list serializers for their input won't work well with the \nAdminRenderer\n, as the HTML forms are unable to properly support them.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.admin'\n\n\n.charset\n: \nutf-8\n\n\n.template\n: \n'rest_framework/admin.html'\n\n\nHTMLFormRenderer\n\n\nRenders data returned by a serializer into an HTML form. The output of this renderer does not include the enclosing \nform\n tags, a hidden CSRF input or any submit buttons.\n\n\nThis renderer is not intended to be used directly, but can instead be used in templates by passing a serializer instance to the \nrender_form\n template tag.\n\n\n{% load rest_framework %}\n\n\nform action=\"/submit-report/\" method=\"post\"\n\n {% csrf_token %}\n {% render_form serializer %}\n \ninput type=\"submit\" value=\"Save\" /\n\n\n/form\n\n\n\n\nFor more information see the \nHTML \n Forms\n documentation.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.form'\n\n\n.charset\n: \nutf-8\n\n\n.template\n: \n'rest_framework/horizontal/form.html'\n\n\nMultiPartRenderer\n\n\nThis renderer is used for rendering HTML multipart form data. \nIt is not suitable as a response renderer\n, but is instead used for creating test requests, using REST framework's \ntest client and test request factory\n.\n\n\n.media_type\n: \nmultipart/form-data; boundary=BoUnDaRyStRiNg\n\n\n.format\n: \n'.multipart'\n\n\n.charset\n: \nutf-8\n\n\n\n\nCustom renderers\n\n\nTo implement a custom renderer, you should override \nBaseRenderer\n, set the \n.media_type\n and \n.format\n properties, and implement the \n.render(self, data, media_type=None, renderer_context=None)\n method.\n\n\nThe method should return a bytestring, which will be used as the body of the HTTP response.\n\n\nThe arguments passed to the \n.render()\n method are:\n\n\ndata\n\n\nThe request data, as set by the \nResponse()\n instantiation.\n\n\nmedia_type=None\n\n\nOptional. If provided, this is the accepted media type, as determined by the content negotiation stage.\n\n\nDepending on the client's \nAccept:\n header, this may be more specific than the renderer's \nmedia_type\n attribute, and may include media type parameters. For example \n\"application/json; nested=true\"\n.\n\n\nrenderer_context=None\n\n\nOptional. If provided, this is a dictionary of contextual information provided by the view.\n\n\nBy default this will include the following keys: \nview\n, \nrequest\n, \nresponse\n, \nargs\n, \nkwargs\n.\n\n\nExample\n\n\nThe following is an example plaintext renderer that will return a response with the \ndata\n parameter as the content of the response.\n\n\nfrom django.utils.encoding import smart_unicode\nfrom rest_framework import renderers\n\n\nclass PlainTextRenderer(renderers.BaseRenderer):\n media_type = 'text/plain'\n format = 'txt'\n\n def render(self, data, media_type=None, renderer_context=None):\n return data.encode(self.charset)\n\n\n\nSetting the character set\n\n\nBy default renderer classes are assumed to be using the \nUTF-8\n encoding. To use a different encoding, set the \ncharset\n attribute on the renderer.\n\n\nclass PlainTextRenderer(renderers.BaseRenderer):\n media_type = 'text/plain'\n format = 'txt'\n charset = 'iso-8859-1'\n\n def render(self, data, media_type=None, renderer_context=None):\n return data.encode(self.charset)\n\n\n\nNote that if a renderer class returns a unicode string, then the response content will be coerced into a bytestring by the \nResponse\n class, with the \ncharset\n attribute set on the renderer used to determine the encoding.\n\n\nIf the renderer returns a bytestring representing raw binary content, you should set a charset value of \nNone\n, which will ensure the \nContent-Type\n header of the response will not have a \ncharset\n value set.\n\n\nIn some cases you may also want to set the \nrender_style\n attribute to \n'binary'\n. Doing so will also ensure that the browsable API will not attempt to display the binary content as a string.\n\n\nclass JPEGRenderer(renderers.BaseRenderer):\n media_type = 'image/jpeg'\n format = 'jpg'\n charset = None\n render_style = 'binary'\n\n def render(self, data, media_type=None, renderer_context=None):\n return data\n\n\n\n\n\nAdvanced renderer usage\n\n\nYou can do some pretty flexible things using REST framework's renderers. Some examples...\n\n\n\n\nProvide either flat or nested representations from the same endpoint, depending on the requested media type.\n\n\nServe both regular HTML webpages, and JSON based API responses from the same endpoints.\n\n\nSpecify multiple types of HTML representation for API clients to use.\n\n\nUnderspecify a renderer's media type, such as using \nmedia_type = 'image/*'\n, and use the \nAccept\n header to vary the encoding of the response.\n\n\n\n\nVarying behaviour by media type\n\n\nIn some cases you might want your view to use different serialization styles depending on the accepted media type. If you need to do this you can access \nrequest.accepted_renderer\n to determine the negotiated renderer that will be used for the response.\n\n\nFor example:\n\n\n@api_view(('GET',))\n@renderer_classes((TemplateHTMLRenderer, JSONRenderer))\ndef list_users(request):\n \"\"\"\n A view that can return JSON or HTML representations\n of the users in the system.\n \"\"\"\n queryset = Users.objects.filter(active=True)\n\n if request.accepted_renderer.format == 'html':\n # TemplateHTMLRenderer takes a context dict,\n # and additionally requires a 'template_name'.\n # It does not require serialization.\n data = {'users': queryset}\n return Response(data, template_name='list_users.html')\n\n # JSONRenderer requires serialized data as normal.\n serializer = UserSerializer(instance=queryset)\n data = serializer.data\n return Response(data)\n\n\n\nUnderspecifying the media type\n\n\nIn some cases you might want a renderer to serve a range of media types.\nIn this case you can underspecify the media types it should respond to, by using a \nmedia_type\n value such as \nimage/*\n, or \n*/*\n.\n\n\nIf you underspecify the renderer's media type, you should make sure to specify the media type explicitly when you return the response, using the \ncontent_type\n attribute. For example:\n\n\nreturn Response(data, content_type='image/png')\n\n\n\nDesigning your media types\n\n\nFor the purposes of many Web APIs, simple \nJSON\n responses with hyperlinked relations may be sufficient. If you want to fully embrace RESTful design and \nHATEOAS\n you'll need to consider the design and usage of your media types in more detail.\n\n\nIn \nthe words of Roy Fielding\n, \"A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types.\".\n\n\nFor good examples of custom media types, see GitHub's use of a custom \napplication/vnd.github+json\n media type, and Mike Amundsen's IANA approved \napplication/vnd.collection+json\n JSON-based hypermedia.\n\n\nHTML error views\n\n\nTypically a renderer will behave the same regardless of if it's dealing with a regular response, or with a response caused by an exception being raised, such as an \nHttp404\n or \nPermissionDenied\n exception, or a subclass of \nAPIException\n.\n\n\nIf you're using either the \nTemplateHTMLRenderer\n or the \nStaticHTMLRenderer\n and an exception is raised, the behavior is slightly different, and mirrors \nDjango's default handling of error views\n.\n\n\nExceptions raised and handled by an HTML renderer will attempt to render using one of the following methods, by order of precedence.\n\n\n\n\nLoad and render a template named \n{status_code}.html\n.\n\n\nLoad and render a template named \napi_exception.html\n.\n\n\nRender the HTTP status code and text, for example \"404 Not Found\".\n\n\n\n\nTemplates will render with a \nRequestContext\n which includes the \nstatus_code\n and \ndetails\n keys.\n\n\nNote\n: If \nDEBUG=True\n, Django's standard traceback error page will be displayed instead of rendering the HTTP status code and text.\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nYAML\n\n\nREST framework YAML\n provides \nYAML\n parsing and rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-yaml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_yaml.parsers.YAMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_yaml.renderers.YAMLRenderer',\n ),\n}\n\n\n\nXML\n\n\nREST Framework XML\n provides a simple informal XML format. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-xml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_xml.parsers.XMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_xml.renderers.XMLRenderer',\n ),\n}\n\n\n\nJSONP\n\n\nREST framework JSONP\n provides JSONP rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\n\n\nWarning\n: If you require cross-domain AJAX requests, you should generally be using the more modern approach of \nCORS\n as an alternative to \nJSONP\n. See the \nCORS documentation\n for more details.\n\n\nThe \njsonp\n approach is essentially a browser hack, and is \nonly appropriate for globally readable API endpoints\n, where \nGET\n requests are unauthenticated and do not require any user permissions.\n\n\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-jsonp\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_jsonp.renderers.JSONPRenderer',\n ),\n}\n\n\n\nMessagePack\n\n\nMessagePack\n is a fast, efficient binary serialization format. \nJuan Riaza\n maintains the \ndjangorestframework-msgpack\n package which provides MessagePack renderer and parser support for REST framework.\n\n\nCSV\n\n\nComma-separated values are a plain-text tabular data format, that can be easily imported into spreadsheet applications. \nMjumbe Poe\n maintains the \ndjangorestframework-csv\n package which provides CSV renderer support for REST framework.\n\n\nUltraJSON\n\n\nUltraJSON\n is an optimized C JSON encoder which can give significantly faster JSON rendering. \nJacob Haslehurst\n maintains the \ndrf-ujson-renderer\n package which implements JSON rendering using the UJSON package.\n\n\nCamelCase JSON\n\n\ndjangorestframework-camel-case\n provides camel case JSON renderers and parsers for REST framework. This allows serializers to use Python-style underscored field names, but be exposed in the API as Javascript-style camel case field names. It is maintained by \nVitaly Babiy\n.\n\n\nPandas (CSV, Excel, PNG)\n\n\nDjango REST Pandas\n provides a serializer and renderers that support additional data processing and output via the \nPandas\n DataFrame API. Django REST Pandas includes renderers for Pandas-style CSV files, Excel workbooks (both \n.xls\n and \n.xlsx\n), and a number of \nother formats\n. It is maintained by \nS. Andrew Sheppard\n as part of the \nwq Project\n.",
+ "text": "Renderers\n\n\n\n\nBefore a TemplateResponse instance can be returned to the client, it must be rendered. The rendering process takes the intermediate representation of template and context, and turns it into the final byte stream that can be served to the client.\n\n\n \nDjango documentation\n\n\n\n\nREST framework includes a number of built in Renderer classes, that allow you to return responses with various media types. There is also support for defining your own custom renderers, which gives you the flexibility to design your own media types.\n\n\nHow the renderer is determined\n\n\nThe set of valid renderers for a view is always defined as a list of classes. When a view is entered REST framework will perform content negotiation on the incoming request, and determine the most appropriate renderer to satisfy the request.\n\n\nThe basic process of content negotiation involves examining the request's \nAccept\n header, to determine which media types it expects in the response. Optionally, format suffixes on the URL may be used to explicitly request a particular representation. For example the URL \nhttp://example.com/api/users_count.json\n might be an endpoint that always returns JSON data.\n\n\nFor more information see the documentation on \ncontent negotiation\n.\n\n\nSetting the renderers\n\n\nThe default set of renderers may be set globally, using the \nDEFAULT_RENDERER_CLASSES\n setting. For example, the following settings would use \nJSON\n as the main media type and also include the self describing API.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework.renderers.JSONRenderer',\n 'rest_framework.renderers.BrowsableAPIRenderer',\n )\n}\n\n\n\nYou can also set the renderers used for an individual view, or viewset,\nusing the \nAPIView\n class based views.\n\n\nfrom django.contrib.auth.models import User\nfrom rest_framework.renderers import JSONRenderer\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\nclass UserCountView(APIView):\n \"\"\"\n A view that returns the count of active users in JSON.\n \"\"\"\n renderer_classes = (JSONRenderer, )\n\n def get(self, request, format=None):\n user_count = User.objects.filter(active=True).count()\n content = {'user_count': user_count}\n return Response(content)\n\n\n\nOr, if you're using the \n@api_view\n decorator with function based views.\n\n\n@api_view(['GET'])\n@renderer_classes((JSONRenderer,))\ndef user_count_view(request, format=None):\n \"\"\"\n A view that returns the count of active users in JSON.\n \"\"\"\n user_count = User.objects.filter(active=True).count()\n content = {'user_count': user_count}\n return Response(content)\n\n\n\nOrdering of renderer classes\n\n\nIt's important when specifying the renderer classes for your API to think about what priority you want to assign to each media type. If a client underspecifies the representations it can accept, such as sending an \nAccept: */*\n header, or not including an \nAccept\n header at all, then REST framework will select the first renderer in the list to use for the response.\n\n\nFor example if your API serves JSON responses and the HTML browsable API, you might want to make \nJSONRenderer\n your default renderer, in order to send \nJSON\n responses to clients that do not specify an \nAccept\n header.\n\n\nIf your API includes views that can serve both regular webpages and API responses depending on the request, then you might consider making \nTemplateHTMLRenderer\n your default renderer, in order to play nicely with older browsers that send \nbroken accept headers\n.\n\n\n\n\nAPI Reference\n\n\nJSONRenderer\n\n\nRenders the request data into \nJSON\n, using utf-8 encoding.\n\n\nNote that the default style is to include unicode characters, and render the response using a compact style with no unnecessary whitespace:\n\n\n{\"unicode black star\":\"\u2605\",\"value\":999}\n\n\n\nThe client may additionally include an \n'indent'\n media type parameter, in which case the returned \nJSON\n will be indented. For example \nAccept: application/json; indent=4\n.\n\n\n{\n \"unicode black star\": \"\u2605\",\n \"value\": 999\n}\n\n\n\nThe default JSON encoding style can be altered using the \nUNICODE_JSON\n and \nCOMPACT_JSON\n settings keys.\n\n\n.media_type\n: \napplication/json\n\n\n.format\n: \n'.json'\n\n\n.charset\n: \nNone\n\n\nTemplateHTMLRenderer\n\n\nRenders data to HTML, using Django's standard template rendering.\nUnlike other renderers, the data passed to the \nResponse\n does not need to be serialized. Also, unlike other renderers, you may want to include a \ntemplate_name\n argument when creating the \nResponse\n.\n\n\nThe TemplateHTMLRenderer will create a \nRequestContext\n, using the \nresponse.data\n as the context dict, and determine a template name to use to render the context.\n\n\nThe template name is determined by (in order of preference):\n\n\n\n\nAn explicit \ntemplate_name\n argument passed to the response.\n\n\nAn explicit \n.template_name\n attribute set on this class.\n\n\nThe return result of calling \nview.get_template_names()\n.\n\n\n\n\nAn example of a view that uses \nTemplateHTMLRenderer\n:\n\n\nclass UserDetail(generics.RetrieveAPIView):\n \"\"\"\n A view that returns a templated HTML representation of a given user.\n \"\"\"\n queryset = User.objects.all()\n renderer_classes = (TemplateHTMLRenderer,)\n\n def get(self, request, *args, **kwargs):\n self.object = self.get_object()\n return Response({'user': self.object}, template_name='user_detail.html')\n\n\n\nYou can use \nTemplateHTMLRenderer\n either to return regular HTML pages using REST framework, or to return both HTML and API responses from a single endpoint.\n\n\nIf you're building websites that use \nTemplateHTMLRenderer\n along with other renderer classes, you should consider listing \nTemplateHTMLRenderer\n as the first class in the \nrenderer_classes\n list, so that it will be prioritised first even for browsers that send poorly formed \nACCEPT:\n headers.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.html'\n\n\n.charset\n: \nutf-8\n\n\nSee also: \nStaticHTMLRenderer\n\n\nStaticHTMLRenderer\n\n\nA simple renderer that simply returns pre-rendered HTML. Unlike other renderers, the data passed to the response object should be a string representing the content to be returned.\n\n\nAn example of a view that uses \nStaticHTMLRenderer\n:\n\n\n@api_view(('GET',))\n@renderer_classes((StaticHTMLRenderer,))\ndef simple_html_view(request):\n data = '\nhtml\nbody\nh1\nHello, world\n/h1\n/body\n/html\n'\n return Response(data)\n\n\n\nYou can use \nStaticHTMLRenderer\n either to return regular HTML pages using REST framework, or to return both HTML and API responses from a single endpoint.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.html'\n\n\n.charset\n: \nutf-8\n\n\nSee also: \nTemplateHTMLRenderer\n\n\nBrowsableAPIRenderer\n\n\nRenders data into HTML for the Browsable API:\n\n\n\n\nThis renderer will determine which other renderer would have been given highest priority, and use that to display an API style response within the HTML page.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.api'\n\n\n.charset\n: \nutf-8\n\n\n.template\n: \n'rest_framework/api.html'\n\n\nCustomizing BrowsableAPIRenderer\n\n\nBy default the response content will be rendered with the highest priority renderer apart from \nBrowsableAPIRenderer\n. If you need to customize this behavior, for example to use HTML as the default return format, but use JSON in the browsable API, you can do so by overriding the \nget_default_renderer()\n method. For example:\n\n\nclass CustomBrowsableAPIRenderer(BrowsableAPIRenderer):\n def get_default_renderer(self, view):\n return JSONRenderer()\n\n\n\nAdminRenderer\n\n\nRenders data into HTML for an admin-like display:\n\n\n\n\nThis renderer is suitable for CRUD-style web APIs that should also present a user-friendly interface for managing the data.\n\n\nNote that views that have nested or list serializers for their input won't work well with the \nAdminRenderer\n, as the HTML forms are unable to properly support them.\n\n\nNote\n: The \nAdminRenderer\n is only able to include links to detail pages when a properly configured \nURL_FIELD_NAME\n (\nurl\n by default) attribute is present in the data. For \nHyperlinkedModelSerializer\n this will be the case, but for \nModelSerializer\n or plain \nSerializer\n classes you'll need to make sure to include the field explicitly. For example here we use models \nget_absolute_url\n method:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n url = serializers.CharField(source='get_absolute_url', read_only=True)\n\n class Meta:\n model = Account\n\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.admin'\n\n\n.charset\n: \nutf-8\n\n\n.template\n: \n'rest_framework/admin.html'\n\n\nHTMLFormRenderer\n\n\nRenders data returned by a serializer into an HTML form. The output of this renderer does not include the enclosing \nform\n tags, a hidden CSRF input or any submit buttons.\n\n\nThis renderer is not intended to be used directly, but can instead be used in templates by passing a serializer instance to the \nrender_form\n template tag.\n\n\n{% load rest_framework %}\n\n\nform action=\"/submit-report/\" method=\"post\"\n\n {% csrf_token %}\n {% render_form serializer %}\n \ninput type=\"submit\" value=\"Save\" /\n\n\n/form\n\n\n\n\nFor more information see the \nHTML \n Forms\n documentation.\n\n\n.media_type\n: \ntext/html\n\n\n.format\n: \n'.form'\n\n\n.charset\n: \nutf-8\n\n\n.template\n: \n'rest_framework/horizontal/form.html'\n\n\nMultiPartRenderer\n\n\nThis renderer is used for rendering HTML multipart form data. \nIt is not suitable as a response renderer\n, but is instead used for creating test requests, using REST framework's \ntest client and test request factory\n.\n\n\n.media_type\n: \nmultipart/form-data; boundary=BoUnDaRyStRiNg\n\n\n.format\n: \n'.multipart'\n\n\n.charset\n: \nutf-8\n\n\n\n\nCustom renderers\n\n\nTo implement a custom renderer, you should override \nBaseRenderer\n, set the \n.media_type\n and \n.format\n properties, and implement the \n.render(self, data, media_type=None, renderer_context=None)\n method.\n\n\nThe method should return a bytestring, which will be used as the body of the HTTP response.\n\n\nThe arguments passed to the \n.render()\n method are:\n\n\ndata\n\n\nThe request data, as set by the \nResponse()\n instantiation.\n\n\nmedia_type=None\n\n\nOptional. If provided, this is the accepted media type, as determined by the content negotiation stage.\n\n\nDepending on the client's \nAccept:\n header, this may be more specific than the renderer's \nmedia_type\n attribute, and may include media type parameters. For example \n\"application/json; nested=true\"\n.\n\n\nrenderer_context=None\n\n\nOptional. If provided, this is a dictionary of contextual information provided by the view.\n\n\nBy default this will include the following keys: \nview\n, \nrequest\n, \nresponse\n, \nargs\n, \nkwargs\n.\n\n\nExample\n\n\nThe following is an example plaintext renderer that will return a response with the \ndata\n parameter as the content of the response.\n\n\nfrom django.utils.encoding import smart_unicode\nfrom rest_framework import renderers\n\n\nclass PlainTextRenderer(renderers.BaseRenderer):\n media_type = 'text/plain'\n format = 'txt'\n\n def render(self, data, media_type=None, renderer_context=None):\n return data.encode(self.charset)\n\n\n\nSetting the character set\n\n\nBy default renderer classes are assumed to be using the \nUTF-8\n encoding. To use a different encoding, set the \ncharset\n attribute on the renderer.\n\n\nclass PlainTextRenderer(renderers.BaseRenderer):\n media_type = 'text/plain'\n format = 'txt'\n charset = 'iso-8859-1'\n\n def render(self, data, media_type=None, renderer_context=None):\n return data.encode(self.charset)\n\n\n\nNote that if a renderer class returns a unicode string, then the response content will be coerced into a bytestring by the \nResponse\n class, with the \ncharset\n attribute set on the renderer used to determine the encoding.\n\n\nIf the renderer returns a bytestring representing raw binary content, you should set a charset value of \nNone\n, which will ensure the \nContent-Type\n header of the response will not have a \ncharset\n value set.\n\n\nIn some cases you may also want to set the \nrender_style\n attribute to \n'binary'\n. Doing so will also ensure that the browsable API will not attempt to display the binary content as a string.\n\n\nclass JPEGRenderer(renderers.BaseRenderer):\n media_type = 'image/jpeg'\n format = 'jpg'\n charset = None\n render_style = 'binary'\n\n def render(self, data, media_type=None, renderer_context=None):\n return data\n\n\n\n\n\nAdvanced renderer usage\n\n\nYou can do some pretty flexible things using REST framework's renderers. Some examples...\n\n\n\n\nProvide either flat or nested representations from the same endpoint, depending on the requested media type.\n\n\nServe both regular HTML webpages, and JSON based API responses from the same endpoints.\n\n\nSpecify multiple types of HTML representation for API clients to use.\n\n\nUnderspecify a renderer's media type, such as using \nmedia_type = 'image/*'\n, and use the \nAccept\n header to vary the encoding of the response.\n\n\n\n\nVarying behaviour by media type\n\n\nIn some cases you might want your view to use different serialization styles depending on the accepted media type. If you need to do this you can access \nrequest.accepted_renderer\n to determine the negotiated renderer that will be used for the response.\n\n\nFor example:\n\n\n@api_view(('GET',))\n@renderer_classes((TemplateHTMLRenderer, JSONRenderer))\ndef list_users(request):\n \"\"\"\n A view that can return JSON or HTML representations\n of the users in the system.\n \"\"\"\n queryset = Users.objects.filter(active=True)\n\n if request.accepted_renderer.format == 'html':\n # TemplateHTMLRenderer takes a context dict,\n # and additionally requires a 'template_name'.\n # It does not require serialization.\n data = {'users': queryset}\n return Response(data, template_name='list_users.html')\n\n # JSONRenderer requires serialized data as normal.\n serializer = UserSerializer(instance=queryset)\n data = serializer.data\n return Response(data)\n\n\n\nUnderspecifying the media type\n\n\nIn some cases you might want a renderer to serve a range of media types.\nIn this case you can underspecify the media types it should respond to, by using a \nmedia_type\n value such as \nimage/*\n, or \n*/*\n.\n\n\nIf you underspecify the renderer's media type, you should make sure to specify the media type explicitly when you return the response, using the \ncontent_type\n attribute. For example:\n\n\nreturn Response(data, content_type='image/png')\n\n\n\nDesigning your media types\n\n\nFor the purposes of many Web APIs, simple \nJSON\n responses with hyperlinked relations may be sufficient. If you want to fully embrace RESTful design and \nHATEOAS\n you'll need to consider the design and usage of your media types in more detail.\n\n\nIn \nthe words of Roy Fielding\n, \"A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types.\".\n\n\nFor good examples of custom media types, see GitHub's use of a custom \napplication/vnd.github+json\n media type, and Mike Amundsen's IANA approved \napplication/vnd.collection+json\n JSON-based hypermedia.\n\n\nHTML error views\n\n\nTypically a renderer will behave the same regardless of if it's dealing with a regular response, or with a response caused by an exception being raised, such as an \nHttp404\n or \nPermissionDenied\n exception, or a subclass of \nAPIException\n.\n\n\nIf you're using either the \nTemplateHTMLRenderer\n or the \nStaticHTMLRenderer\n and an exception is raised, the behavior is slightly different, and mirrors \nDjango's default handling of error views\n.\n\n\nExceptions raised and handled by an HTML renderer will attempt to render using one of the following methods, by order of precedence.\n\n\n\n\nLoad and render a template named \n{status_code}.html\n.\n\n\nLoad and render a template named \napi_exception.html\n.\n\n\nRender the HTTP status code and text, for example \"404 Not Found\".\n\n\n\n\nTemplates will render with a \nRequestContext\n which includes the \nstatus_code\n and \ndetails\n keys.\n\n\nNote\n: If \nDEBUG=True\n, Django's standard traceback error page will be displayed instead of rendering the HTTP status code and text.\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nYAML\n\n\nREST framework YAML\n provides \nYAML\n parsing and rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-yaml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_yaml.parsers.YAMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_yaml.renderers.YAMLRenderer',\n ),\n}\n\n\n\nXML\n\n\nREST Framework XML\n provides a simple informal XML format. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-xml\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PARSER_CLASSES': (\n 'rest_framework_xml.parsers.XMLParser',\n ),\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_xml.renderers.XMLRenderer',\n ),\n}\n\n\n\nJSONP\n\n\nREST framework JSONP\n provides JSONP rendering support. It was previously included directly in the REST framework package, and is now instead supported as a third-party package.\n\n\n\n\nWarning\n: If you require cross-domain AJAX requests, you should generally be using the more modern approach of \nCORS\n as an alternative to \nJSONP\n. See the \nCORS documentation\n for more details.\n\n\nThe \njsonp\n approach is essentially a browser hack, and is \nonly appropriate for globally readable API endpoints\n, where \nGET\n requests are unauthenticated and do not require any user permissions.\n\n\n\n\nInstallation \n configuration\n\n\nInstall using pip.\n\n\n$ pip install djangorestframework-jsonp\n\n\n\nModify your REST framework settings.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_RENDERER_CLASSES': (\n 'rest_framework_jsonp.renderers.JSONPRenderer',\n ),\n}\n\n\n\nMessagePack\n\n\nMessagePack\n is a fast, efficient binary serialization format. \nJuan Riaza\n maintains the \ndjangorestframework-msgpack\n package which provides MessagePack renderer and parser support for REST framework.\n\n\nCSV\n\n\nComma-separated values are a plain-text tabular data format, that can be easily imported into spreadsheet applications. \nMjumbe Poe\n maintains the \ndjangorestframework-csv\n package which provides CSV renderer support for REST framework.\n\n\nUltraJSON\n\n\nUltraJSON\n is an optimized C JSON encoder which can give significantly faster JSON rendering. \nJacob Haslehurst\n maintains the \ndrf-ujson-renderer\n package which implements JSON rendering using the UJSON package.\n\n\nCamelCase JSON\n\n\ndjangorestframework-camel-case\n provides camel case JSON renderers and parsers for REST framework. This allows serializers to use Python-style underscored field names, but be exposed in the API as Javascript-style camel case field names. It is maintained by \nVitaly Babiy\n.\n\n\nPandas (CSV, Excel, PNG)\n\n\nDjango REST Pandas\n provides a serializer and renderers that support additional data processing and output via the \nPandas\n DataFrame API. Django REST Pandas includes renderers for Pandas-style CSV files, Excel workbooks (both \n.xls\n and \n.xlsx\n), and a number of \nother formats\n. It is maintained by \nS. Andrew Sheppard\n as part of the \nwq Project\n.",
"title": "Renderers"
},
{
@@ -972,7 +972,7 @@
},
{
"location": "/api-guide/renderers/#adminrenderer",
- "text": "Renders data into HTML for an admin-like display: This renderer is suitable for CRUD-style web APIs that should also present a user-friendly interface for managing the data. Note that views that have nested or list serializers for their input won't work well with the AdminRenderer , as the HTML forms are unable to properly support them. .media_type : text/html .format : '.admin' .charset : utf-8 .template : 'rest_framework/admin.html'",
+ "text": "Renders data into HTML for an admin-like display: This renderer is suitable for CRUD-style web APIs that should also present a user-friendly interface for managing the data. Note that views that have nested or list serializers for their input won't work well with the AdminRenderer , as the HTML forms are unable to properly support them. Note : The AdminRenderer is only able to include links to detail pages when a properly configured URL_FIELD_NAME ( url by default) attribute is present in the data. For HyperlinkedModelSerializer this will be the case, but for ModelSerializer or plain Serializer classes you'll need to make sure to include the field explicitly. For example here we use models get_absolute_url method: class AccountSerializer(serializers.ModelSerializer):\n url = serializers.CharField(source='get_absolute_url', read_only=True)\n\n class Meta:\n model = Account .media_type : text/html .format : '.admin' .charset : utf-8 .template : 'rest_framework/admin.html'",
"title": "AdminRenderer"
},
{
@@ -1072,7 +1072,7 @@
},
{
"location": "/api-guide/serializers/",
- "text": "Serializers\n\n\n\n\nExpanding the usefulness of the serializers is something that we would\nlike to address. However, it's not a trivial problem, and it\nwill take some serious design work.\n\n\n Russell Keith-Magee, \nDjango users group\n\n\n\n\nSerializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into \nJSON\n, \nXML\n or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.\n\n\nThe serializers in REST framework work very similarly to Django's \nForm\n and \nModelForm\n classes. We provide a \nSerializer\n class which gives you a powerful, generic way to control the output of your responses, as well as a \nModelSerializer\n class which provides a useful shortcut for creating serializers that deal with model instances and querysets.\n\n\nDeclaring Serializers\n\n\nLet's start by creating a simple object we can use for example purposes:\n\n\nfrom datetime import datetime\n\nclass Comment(object):\n def __init__(self, email, content, created=None):\n self.email = email\n self.content = content\n self.created = created or datetime.now()\n\ncomment = Comment(email='leila@example.com', content='foo bar')\n\n\n\nWe'll declare a serializer that we can use to serialize and deserialize data that corresponds to \nComment\n objects.\n\n\nDeclaring a serializer looks very similar to declaring a form:\n\n\nfrom rest_framework import serializers\n\nclass CommentSerializer(serializers.Serializer):\n email = serializers.EmailField()\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nSerializing objects\n\n\nWe can now use \nCommentSerializer\n to serialize a comment, or list of comments. Again, using the \nSerializer\n class looks a lot like using a \nForm\n class.\n\n\nserializer = CommentSerializer(comment)\nserializer.data\n# {'email': u'leila@example.com', 'content': u'foo bar', 'created': datetime.datetime(2012, 8, 22, 16, 20, 9, 822774)}\n\n\n\nAt this point we've translated the model instance into Python native datatypes. To finalise the serialization process we render the data into \njson\n.\n\n\nfrom rest_framework.renderers import JSONRenderer\n\njson = JSONRenderer().render(serializer.data)\njson\n# '{\"email\": \"leila@example.com\", \"content\": \"foo bar\", \"created\": \"2012-08-22T16:20:09.822\"}'\n\n\n\nDeserializing objects\n\n\nDeserialization is similar. First we parse a stream into Python native datatypes...\n\n\nfrom django.utils.six import BytesIO\nfrom rest_framework.parsers import JSONParser\n\nstream = BytesIO(json)\ndata = JSONParser().parse(stream)\n\n\n\n...then we restore those native datatypes into a dictionary of validated data.\n\n\nserializer = CommentSerializer(data=data)\nserializer.is_valid()\n# True\nserializer.validated_data\n# {'content': 'foo bar', 'email': 'leila@example.com', 'created': datetime.datetime(2012, 08, 22, 16, 20, 09, 822243)}\n\n\n\nSaving instances\n\n\nIf we want to be able to return complete object instances based on the validated data we need to implement one or both of the \n.create()\n and \nupdate()\n methods. For example:\n\n\nclass CommentSerializer(serializers.Serializer):\n email = serializers.EmailField()\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n def create(self, validated_data):\n return Comment(**validated_data)\n\n def update(self, instance, validated_data):\n instance.email = validated_data.get('email', instance.email)\n instance.content = validated_data.get('content', instance.content)\n instance.created = validated_data.get('created', instance.created)\n return instance\n\n\n\nIf your object instances correspond to Django models you'll also want to ensure that these methods save the object to the database. For example, if \nComment\n was a Django model, the methods might look like this:\n\n\n def create(self, validated_data):\n return Comment.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n instance.email = validated_data.get('email', instance.email)\n instance.content = validated_data.get('content', instance.content)\n instance.created = validated_data.get('created', instance.created)\n instance.save()\n return instance\n\n\n\nNow when deserializing data, we can call \n.save()\n to return an object instance, based on the validated data.\n\n\ncomment = serializer.save()\n\n\n\nCalling \n.save()\n will either create a new instance, or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:\n\n\n# .save() will create a new instance.\nserializer = CommentSerializer(data=data)\n\n# .save() will update the existing `comment` instance.\nserializer = CommentSerializer(comment, data=data)\n\n\n\nBoth the \n.create()\n and \n.update()\n methods are optional. You can implement either neither, one, or both of them, depending on the use-case for your serializer class.\n\n\nPassing additional attributes to \n.save()\n\n\nSometimes you'll want your view code to be able to inject additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or anything else that is not part of the request data.\n\n\nYou can do so by including additional keyword arguments when calling \n.save()\n. For example:\n\n\nserializer.save(owner=request.user)\n\n\n\nAny additional keyword arguments will be included in the \nvalidated_data\n argument when \n.create()\n or \n.update()\n are called.\n\n\nOverriding \n.save()\n directly.\n\n\nIn some cases the \n.create()\n and \n.update()\n method names may not be meaningful. For example, in a contact form we may not be creating new instances, but instead sending an email or other message.\n\n\nIn these cases you might instead choose to override \n.save()\n directly, as being more readable and meaningful.\n\n\nFor example:\n\n\nclass ContactForm(serializers.Serializer):\n email = serializers.EmailField()\n message = serializers.CharField()\n\n def save(self):\n email = self.validated_data['email']\n message = self.validated_data['message']\n send_email(from=email, message=message)\n\n\n\nNote that in the case above we're now having to access the serializer \n.validated_data\n property directly.\n\n\nValidation\n\n\nWhen deserializing data, you always need to call \nis_valid()\n before attempting to access the validated data, or save an object instance. If any validation errors occur, the \n.errors\n property will contain a dictionary representing the resulting error messages. For example:\n\n\nserializer = CommentSerializer(data={'email': 'foobar', 'content': 'baz'})\nserializer.is_valid()\n# False\nserializer.errors\n# {'email': [u'Enter a valid e-mail address.'], 'created': [u'This field is required.']}\n\n\n\nEach key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The \nnon_field_errors\n key may also be present, and will list any general validation errors. The name of the \nnon_field_errors\n key may be customized using the \nNON_FIELD_ERRORS_KEY\n REST framework setting.\n\n\nWhen deserializing a list of items, errors will be returned as a list of dictionaries representing each of the deserialized items.\n\n\nRaising an exception on invalid data\n\n\nThe \n.is_valid()\n method takes an optional \nraise_exception\n flag that will cause it to raise a \nserializers.ValidationError\n exception if there are validation errors.\n\n\nThese exceptions are automatically dealt with by the default exception handler that REST framework provides, and will return \nHTTP 400 Bad Request\n responses by default.\n\n\n# Return a 400 response if the data was invalid.\nserializer.is_valid(raise_exception=True)\n\n\n\nField-level validation\n\n\nYou can specify custom field-level validation by adding \n.validate_\nfield_name\n methods to your \nSerializer\n subclass. These are similar to the \n.clean_\nfield_name\n methods on Django forms.\n\n\nThese methods take a single argument, which is the field value that requires validation.\n\n\nYour \nvalidate_\nfield_name\n methods should return the validated value or raise a \nserializers.ValidationError\n. For example:\n\n\nfrom rest_framework import serializers\n\nclass BlogPostSerializer(serializers.Serializer):\n title = serializers.CharField(max_length=100)\n content = serializers.CharField()\n\n def validate_title(self, value):\n \"\"\"\n Check that the blog post is about Django.\n \"\"\"\n if 'django' not in value.lower():\n raise serializers.ValidationError(\"Blog post is not about Django\")\n return value\n\n\n\n\n\nNote:\n If your \nfield_name\n is declared on your serializer with the parameter \nrequired=False\n then this validation step will not take place if the field is not included.\n\n\n\n\nObject-level validation\n\n\nTo do any other validation that requires access to multiple fields, add a method called \n.validate()\n to your \nSerializer\n subclass. This method takes a single argument, which is a dictionary of field values. It should raise a \nValidationError\n if necessary, or just return the validated values. For example:\n\n\nfrom rest_framework import serializers\n\nclass EventSerializer(serializers.Serializer):\n description = serializers.CharField(max_length=100)\n start = serializers.DateTimeField()\n finish = serializers.DateTimeField()\n\n def validate(self, data):\n \"\"\"\n Check that the start is before the stop.\n \"\"\"\n if data['start'] \n data['finish']:\n raise serializers.ValidationError(\"finish must occur after start\")\n return data\n\n\n\nValidators\n\n\nIndividual fields on a serializer can include validators, by declaring them on the field instance, for example:\n\n\ndef multiple_of_ten(value):\n if value % 10 != 0:\n raise serializers.ValidationError('Not a multiple of ten')\n\nclass GameRecord(serializers.Serializer):\n score = IntegerField(validators=[multiple_of_ten])\n ...\n\n\n\nSerializer classes can also include reusable validators that are applied to the complete set of field data. These validators are included by declaring them on an inner \nMeta\n class, like so:\n\n\nclass EventSerializer(serializers.Serializer):\n name = serializers.CharField()\n room_number = serializers.IntegerField(choices=[101, 102, 103, 201])\n date = serializers.DateField()\n\n class Meta:\n # Each room only has one event per day.\n validators = UniqueTogetherValidator(\n queryset=Event.objects.all(),\n fields=['room_number', 'date']\n )\n\n\n\nFor more information see the \nvalidators documentation\n.\n\n\nAccessing the initial data and instance\n\n\nWhen passing an initial object or queryset to a serializer instance, the object will be made available as \n.instance\n. If no initial object is passed then the \n.instance\n attribute will be \nNone\n.\n\n\nWhen passing data to a serializer instance, the unmodified data will be made available as \n.initial_data\n. If the data keyword argument is not passed then the \n.initial_data\n attribute will not exist.\n\n\nPartial updates\n\n\nBy default, serializers must be passed values for all required fields or they will raise validation errors. You can use the \npartial\n argument in order to allow partial updates.\n\n\n# Update `comment` with partial data\nserializer = CommentSerializer(comment, data={'content': u'foo bar'}, partial=True)\n\n\n\nDealing with nested objects\n\n\nThe previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.\n\n\nThe \nSerializer\n class is itself a type of \nField\n, and can be used to represent relationships where one object type is nested inside another.\n\n\nclass UserSerializer(serializers.Serializer):\n email = serializers.EmailField()\n username = serializers.CharField(max_length=100)\n\nclass CommentSerializer(serializers.Serializer):\n user = UserSerializer()\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nIf a nested representation may optionally accept the \nNone\n value you should pass the \nrequired=False\n flag to the nested serializer.\n\n\nclass CommentSerializer(serializers.Serializer):\n user = UserSerializer(required=False) # May be an anonymous user.\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nSimilarly if a nested representation should be a list of items, you should pass the \nmany=True\n flag to the nested serialized.\n\n\nclass CommentSerializer(serializers.Serializer):\n user = UserSerializer(required=False)\n edits = EditItemSerializer(many=True) # A nested list of 'edit' items.\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nWritable nested representations\n\n\nWhen dealing with nested representations that support deserializing the data, any errors with nested objects will be nested under the field name of the nested object.\n\n\nserializer = CommentSerializer(data={'user': {'email': 'foobar', 'username': 'doe'}, 'content': 'baz'})\nserializer.is_valid()\n# False\nserializer.errors\n# {'user': {'email': [u'Enter a valid e-mail address.']}, 'created': [u'This field is required.']}\n\n\n\nSimilarly, the \n.validated_data\n property will include nested data structures.\n\n\nWriting \n.create()\n methods for nested representations\n\n\nIf you're supporting writable nested representations you'll need to write \n.create()\n or \n.update()\n methods that handle saving multiple objects.\n\n\nThe following example demonstrates how you might handle creating a user with a nested profile object.\n\n\nclass UserSerializer(serializers.ModelSerializer):\n profile = ProfileSerializer()\n\n class Meta:\n model = User\n fields = ('username', 'email', 'profile')\n\n def create(self, validated_data):\n profile_data = validated_data.pop('profile')\n user = User.objects.create(**validated_data)\n Profile.objects.create(user=user, **profile_data)\n return user\n\n\n\nWriting \n.update()\n methods for nested representations\n\n\nFor updates you'll want to think carefully about how to handle updates to relationships. For example if the data for the relationship is \nNone\n, or not provided, which of the following should occur?\n\n\n\n\nSet the relationship to \nNULL\n in the database.\n\n\nDelete the associated instance.\n\n\nIgnore the data and leave the instance as it is.\n\n\nRaise a validation error.\n\n\n\n\nHere's an example for an \nupdate()\n method on our previous \nUserSerializer\n class.\n\n\n def update(self, instance, validated_data):\n profile_data = validated_data.pop('profile')\n # Unless the application properly enforces that this field is\n # always set, the follow could raise a `DoesNotExist`, which\n # would need to be handled.\n profile = instance.profile\n\n instance.username = validated_data.get('username', instance.username)\n instance.email = validated_data.get('email', instance.email)\n instance.save()\n\n profile.is_premium_member = profile_data.get(\n 'is_premium_member',\n profile.is_premium_member\n )\n profile.has_support_contract = profile_data.get(\n 'has_support_contract',\n profile.has_support_contract\n )\n profile.save()\n\n return instance\n\n\n\nBecause the behavior of nested creates and updates can be ambiguous, and may require complex dependencies between related models, REST framework 3 requires you to always write these methods explicitly. The default \nModelSerializer\n \n.create()\n and \n.update()\n methods do not include support for writable nested representations.\n\n\nIt is possible that a third party package, providing automatic support some kinds of automatic writable nested representations may be released alongside the 3.1 release.\n\n\nHandling saving related instances in model manager classes\n\n\nAn alternative to saving multiple related instances in the serializer is to write custom model manager classes that handle creating the correct instances.\n\n\nFor example, suppose we wanted to ensure that \nUser\n instances and \nProfile\n instances are always created together as a pair. We might write a custom manager class that looks something like this:\n\n\nclass UserManager(models.Manager):\n ...\n\n def create(self, username, email, is_premium_member=False, has_support_contract=False):\n user = User(username=username, email=email)\n user.save()\n profile = Profile(\n user=user,\n is_premium_member=is_premium_member,\n has_support_contract=has_support_contract\n )\n profile.save()\n return user\n\n\n\nThis manager class now more nicely encapsulates that user instances and profile instances are always created at the same time. Our \n.create()\n method on the serializer class can now be re-written to use the new manager method.\n\n\ndef create(self, validated_data):\n return User.objects.create(\n username=validated_data['username'],\n email=validated_data['email']\n is_premium_member=validated_data['profile']['is_premium_member']\n has_support_contract=validated_data['profile']['has_support_contract']\n )\n\n\n\nFor more details on this approach see the Django documentation on \nmodel managers\n, and \nthis blogpost on using model and manager classes\n.\n\n\nDealing with multiple objects\n\n\nThe \nSerializer\n class can also handle serializing or deserializing lists of objects.\n\n\nSerializing multiple objects\n\n\nTo serialize a queryset or list of objects instead of a single object instance, you should pass the \nmany=True\n flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.\n\n\nqueryset = Book.objects.all()\nserializer = BookSerializer(queryset, many=True)\nserializer.data\n# [\n# {'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'},\n# {'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'},\n# {'id': 2, 'title': 'The wind-up bird chronicle', 'author': 'Haruki Murakami'}\n# ]\n\n\n\nDeserializing multiple objects\n\n\nThe default behavior for deserializing multiple objects is to support multiple object creation, but not support multiple object updates. For more information on how to support or customize either of these cases, see the \nListSerializer\n documentation below.\n\n\nIncluding extra context\n\n\nThere are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you're using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.\n\n\nYou can provide arbitrary additional context by passing a \ncontext\n argument when instantiating the serializer. For example:\n\n\nserializer = AccountSerializer(account, context={'request': request})\nserializer.data\n# {'id': 6, 'owner': u'denvercoder9', 'created': datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), 'details': 'http://example.com/accounts/6/details'}\n\n\n\nThe context dictionary can be used within any serializer field logic, such as a custom \n.to_representation()\n method, by accessing the \nself.context\n attribute.\n\n\n\n\nModelSerializer\n\n\nOften you'll want serializer classes that map closely to Django model definitions.\n\n\nThe \nModelSerializer\n class provides a shortcut that lets you automatically create a \nSerializer\n class with fields that correspond to the Model fields.\n\n\nThe \nModelSerializer\n class is the same as a regular \nSerializer\n class, except that\n:\n\n\n\n\nIt will automatically generate a set of fields for you, based on the model.\n\n\nIt will automatically generate validators for the serializer, such as unique_together validators.\n\n\nIt includes simple default implementations of \n.create()\n and \n.update()\n.\n\n\n\n\nDeclaring a \nModelSerializer\n looks like this:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n\n\n\nBy default, all the model fields on the class will be mapped to a corresponding serializer fields.\n\n\nAny relationships such as foreign keys on the model will be mapped to \nPrimaryKeyRelatedField\n. Reverse relationships are not included by default unless explicitly included as described below.\n\n\nInspecting a \nModelSerializer\n\n\nSerializer classes generate helpful verbose representation strings, that allow you to fully inspect the state of their fields. This is particularly useful when working with \nModelSerializers\n where you want to determine what set of fields and validators are being automatically created for you.\n\n\nTo do so, open the Django shell, using \npython manage.py shell\n, then import the serializer class, instantiate it, and print the object representation\u2026\n\n\n from myapp.serializers import AccountSerializer\n\n serializer = AccountSerializer()\n\n print repr(serializer) # Or `print(repr(serializer))` in Python 3.x.\nAccountSerializer():\n id = IntegerField(label='ID', read_only=True)\n name = CharField(allow_blank=True, max_length=100, required=False)\n owner = PrimaryKeyRelatedField(queryset=User.objects.all())\n\n\n\nSpecifying which fields to include\n\n\nIf you only want a subset of the default fields to be used in a model serializer, you can do so using \nfields\n or \nexclude\n options, just as you would with a \nModelForm\n. It is strongly recommended that you explicitly set all fields that should be serialized using the \nfields\n attribute. This will make it less likely to result in unintentionally exposing data when your models change.\n\n\nFor example:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n\n\n\nYou can also set the \nfields\n attribute to the special value \n'__all__'\n to indicate that all fields in the model should be used.\n\n\nFor example:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = '__all__'\n\n\n\nYou can set the \nexclude\n attribute to a list of fields to be excluded from the serializer.\n\n\nFor example:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n exclude = ('users',)\n\n\n\nIn the example above, if the \nAccount\n model had 3 fields \naccount_name\n, \nusers\n, and \ncreated\n, this will result in the fields \naccount_name\n and \ncreated\n to be serialized.\n\n\nThe names in the \nfields\n and \nexclude\n attributes will normally map to model fields on the model class.\n\n\nAlternatively names in the \nfields\n options can map to properties or methods which take no arguments that exist on the model class.\n\n\nSpecifying nested serialization\n\n\nThe default \nModelSerializer\n uses primary keys for relationships, but you can also easily generate nested representations using the \ndepth\n option:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n depth = 1\n\n\n\nThe \ndepth\n option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.\n\n\nIf you want to customize the way the serialization is done you'll need to define the field yourself.\n\n\nSpecifying fields explicitly\n\n\nYou can add extra fields to a \nModelSerializer\n or override the default fields by declaring fields on the class, just as you would for a \nSerializer\n class.\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n url = serializers.CharField(source='get_absolute_url', read_only=True)\n groups = serializers.PrimaryKeyRelatedField(many=True)\n\n class Meta:\n model = Account\n\n\n\nExtra fields can correspond to any property or callable on the model.\n\n\nSpecifying read only fields\n\n\nYou may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the \nread_only=True\n attribute, you may use the shortcut Meta option, \nread_only_fields\n.\n\n\nThis option should be a list or tuple of field names, and is declared as follows:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n read_only_fields = ('account_name',)\n\n\n\nModel fields which have \neditable=False\n set, and \nAutoField\n fields will be set to read-only by default, and do not need to be added to the \nread_only_fields\n option.\n\n\n\n\nNote\n: There is a special-case where a read-only field is part of a \nunique_together\n constraint at the model level. In this case the field is required by the serializer class in order to validate the constraint, but should also not be editable by the user.\n\n\nThe right way to deal with this is to specify the field explicitly on the serializer, providing both the \nread_only=True\n and \ndefault=\u2026\n keyword arguments.\n\n\nOne example of this is a read-only relation to the currently authenticated \nUser\n which is \nunique_together\n with another identifier. In this case you would declare the user field like so:\n\n\nuser = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())\n\n\n\nPlease review the \nValidators Documentation\n for details on the \nUniqueTogetherValidator\n and \nCurrentUserDefault\n classes.\n\n\n\n\nAdditional keyword arguments\n\n\nThere is also a shortcut allowing you to specify arbitrary additional keyword arguments on fields, using the \nextra_kwargs\n option. As in the case of \nread_only_fields\n, this means you do not need to explicitly declare the field on the serializer.\n\n\nThis option is a dictionary, mapping field names to a dictionary of keyword arguments. For example:\n\n\nclass CreateUserSerializer(serializers.ModelSerializer):\n class Meta:\n model = User\n fields = ('email', 'username', 'password')\n extra_kwargs = {'password': {'write_only': True}}\n\n def create(self, validated_data):\n user = User(\n email=validated_data['email'],\n username=validated_data['username']\n )\n user.set_password(validated_data['password'])\n user.save()\n return user\n\n\n\nRelational fields\n\n\nWhen serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for \nModelSerializer\n is to use the primary keys of the related instances.\n\n\nAlternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.\n\n\nFor full details see the \nserializer relations\n documentation.\n\n\nInheritance of the 'Meta' class\n\n\nThe inner \nMeta\n class on serializers is not inherited from parent classes by default. This is the same behavior as with Django's \nModel\n and \nModelForm\n classes. If you want the \nMeta\n class to inherit from a parent class you must do so explicitly. For example:\n\n\nclass AccountSerializer(MyBaseSerializer):\n class Meta(MyBaseSerializer.Meta):\n model = Account\n\n\n\nTypically we would recommend \nnot\n using inheritance on inner Meta classes, but instead declaring all options explicitly.\n\n\nCustomizing field mappings\n\n\nThe ModelSerializer class also exposes an API that you can override in order to alter how serializer fields are automatically determined when instantiating the serializer.\n\n\nNormally if a \nModelSerializer\n does not generate the fields you need by default then you should either add them to the class explicitly, or simply use a regular \nSerializer\n class instead. However in some cases you may want to create a new base class that defines how the serializer fields are created for any given model.\n\n\n.serializer_field_mapping\n\n\nA mapping of Django model classes to REST framework serializer classes. You can override this mapping to alter the default serializer classes that should be used for each model class.\n\n\n.serializer_related_field\n\n\nThis property should be the serializer field class, that is used for relational fields by default.\n\n\nFor \nModelSerializer\n this defaults to \nPrimaryKeyRelatedField\n.\n\n\nFor \nHyperlinkedModelSerializer\n this defaults to \nserializers.HyperlinkedRelatedField\n.\n\n\nserializer_url_field\n\n\nThe serializer field class that should be used for any \nurl\n field on the serializer.\n\n\nDefaults to \nserializers.HyperlinkedIdentityField\n\n\nserializer_choice_field\n\n\nThe serializer field class that should be used for any choice fields on the serializer.\n\n\nDefaults to \nserializers.ChoiceField\n\n\nThe field_class and field_kwargs API\n\n\nThe following methods are called to determine the class and keyword arguments for each field that should be automatically included on the serializer. Each of these methods should return a two tuple of \n(field_class, field_kwargs)\n.\n\n\n.build_standard_field(self, field_name, model_field)\n\n\nCalled to generate a serializer field that maps to a standard model field.\n\n\nThe default implementation returns a serializer class based on the \nserializer_field_mapping\n attribute.\n\n\n.build_relational_field(self, field_name, relation_info)\n\n\nCalled to generate a serializer field that maps to a relational model field.\n\n\nThe default implementation returns a serializer class based on the \nserializer_relational_field\n attribute.\n\n\nThe \nrelation_info\n argument is a named tuple, that contains \nmodel_field\n, \nrelated_model\n, \nto_many\n and \nhas_through_model\n properties.\n\n\n.build_nested_field(self, field_name, relation_info, nested_depth)\n\n\nCalled to generate a serializer field that maps to a relational model field, when the \ndepth\n option has been set.\n\n\nThe default implementation dynamically creates a nested serializer class based on either \nModelSerializer\n or \nHyperlinkedModelSerializer\n.\n\n\nThe \nnested_depth\n will be the value of the \ndepth\n option, minus one.\n\n\nThe \nrelation_info\n argument is a named tuple, that contains \nmodel_field\n, \nrelated_model\n, \nto_many\n and \nhas_through_model\n properties.\n\n\n.build_property_field(self, field_name, model_class)\n\n\nCalled to generate a serializer field that maps to a property or zero-argument method on the model class.\n\n\nThe default implementation returns a \nReadOnlyField\n class.\n\n\n.build_url_field(self, field_name, model_class)\n\n\nCalled to generate a serializer field for the serializer's own \nurl\n field. The default implementation returns a \nHyperlinkedIdentityField\n class.\n\n\n.build_unknown_field(self, field_name, model_class)\n\n\nCalled when the field name did not map to any model field or model property.\nThe default implementation raises an error, although subclasses may customize this behavior.\n\n\n\n\nHyperlinkedModelSerializer\n\n\nThe \nHyperlinkedModelSerializer\n class is similar to the \nModelSerializer\n class except that it uses hyperlinks to represent relationships, rather than primary keys.\n\n\nBy default the serializer will include a \nurl\n field instead of a primary key field.\n\n\nThe url field will be represented using a \nHyperlinkedIdentityField\n serializer field, and any relationships on the model will be represented using a \nHyperlinkedRelatedField\n serializer field.\n\n\nYou can explicitly include the primary key by adding it to the \nfields\n option, for example:\n\n\nclass AccountSerializer(serializers.HyperlinkedModelSerializer):\n class Meta:\n model = Account\n fields = ('url', 'id', 'account_name', 'users', 'created')\n\n\n\nHow hyperlinked views are determined\n\n\nThere needs to be a way of determining which views should be used for hyperlinking to model instances.\n\n\nBy default hyperlinks are expected to correspond to a view name that matches the style \n'{model_name}-detail'\n, and looks up the instance by a \npk\n keyword argument.\n\n\nYou can override a URL field view name and lookup field by using either, or both of, the \nview_name\n and \nlookup_field\n options in the \nextra_kwargs\n setting, like so:\n\n\nclass AccountSerializer(serializers.HyperlinkedModelSerializer):\n class Meta:\n model = Account\n fields = ('account_url', 'account_name', 'users', 'created')\n extra_kwargs = {\n 'url': {'view_name': 'accounts', 'lookup_field': 'account_name'}\n 'users': {'lookup_field': 'username'}\n }\n\n\n\nAlternatively you can set the fields on the serializer explicitly. For example:\n\n\nclass AccountSerializer(serializers.HyperlinkedModelSerializer):\n url = serializers.HyperlinkedIdentityField(\n view_name='accounts',\n lookup_field='slug'\n )\n users = serializers.HyperlinkedRelatedField(\n view_name='user-detail',\n lookup_field='username',\n many=True,\n read_only=True\n )\n\n class Meta:\n model = Account\n fields = ('url', 'account_name', 'users', 'created')\n\n\n\n\n\nTip\n: Properly matching together hyperlinked representations and your URL conf can sometimes be a bit fiddly. Printing the \nrepr\n of a \nHyperlinkedModelSerializer\n instance is a particularly useful way to inspect exactly which view names and lookup fields the relationships are expected to map too.\n\n\n\n\nChanging the URL field name\n\n\nThe name of the URL field defaults to 'url'. You can override this globally, by using the \nURL_FIELD_NAME\n setting.\n\n\n\n\nListSerializer\n\n\nThe \nListSerializer\n class provides the behavior for serializing and validating multiple objects at once. You won't \ntypically\n need to use \nListSerializer\n directly, but should instead simply pass \nmany=True\n when instantiating a serializer.\n\n\nWhen a serializer is instantiated and \nmany=True\n is passed, a \nListSerializer\n instance will be created. The serializer class then becomes a child of the parent \nListSerializer\n\n\nThere \nare\n a few use cases when you might want to customize the \nListSerializer\n behavior. For example:\n\n\n\n\nYou want to provide particular validation of the lists, such as always ensuring that there is at least one element in a list.\n\n\nYou want to customize the create or update behavior of multiple objects.\n\n\n\n\nFor these cases you can modify the class that is used when \nmany=True\n is passed, by using the \nlist_serializer_class\n option on the serializer \nMeta\n class.\n\n\nFor example:\n\n\nclass CustomListSerializer(serializers.ListSerializer):\n ...\n\nclass CustomSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = CustomListSerializer\n\n\n\nCustomizing multiple create\n\n\nThe default implementation for multiple object creation is to simply call \n.create()\n for each item in the list. If you want to customize this behavior, you'll need to customize the \n.create()\n method on \nListSerializer\n class that is used when \nmany=True\n is passed.\n\n\nFor example:\n\n\nclass BookListSerializer(serializers.ListSerializer):\n def create(self, validated_data):\n books = [Book(**item) for item in validated_data]\n return Book.objects.bulk_create(books)\n\nclass BookSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = BookListSerializer\n\n\n\nCustomizing multiple update\n\n\nBy default the \nListSerializer\n class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous.\n\n\nTo support multiple updates you'll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind:\n\n\n\n\nHow do you determine which instance should be updated for each item in the list of data?\n\n\nHow should insertions be handled? Are they invalid, or do they create new objects?\n\n\nHow should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid?\n\n\nHow should ordering be handled? Does changing the position of two items imply any state change or is it ignored?\n\n\n\n\nHere's an example of how you might choose to implement multiple updates:\n\n\nclass BookListSerializer(serializers.ListSerializer):\n def update(self, instance, validated_data):\n # Maps for id-\ninstance and id-\ndata item.\n book_mapping = {book.id: book for book in instance}\n data_mapping = {item['id']: item for item in validated_data}\n\n # Perform creations and updates.\n ret = []\n for book_id, data in data_mapping.items():\n book = book_mapping.get(book_id, None):\n if book is None:\n ret.append(self.child.create(data))\n else:\n ret.append(self.child.update(book, data))\n\n # Perform deletions.\n for book_id, book in book_mapping.items():\n if book_id not in data_mapping:\n book.delete()\n\n return ret\n\nclass BookSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = BookListSerializer\n\n\n\nIt is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the \nallow_add_remove\n behavior that was present in REST framework 2.\n\n\nCustomizing ListSerializer initialization\n\n\nWhen a serializer with \nmany=True\n is instantiated, we need to determine which arguments and keyword arguments should be passed to the \n.__init__()\n method for both the child \nSerializer\n class, and for the parent \nListSerializer\n class.\n\n\nThe default implementation is to pass all arguments to both classes, except for \nvalidators\n, and any custom keyword arguments, both of which are assumed to be intended for the child serializer class.\n\n\nOccasionally you might need to explicitly specify how the child and parent classes should be instantiated when \nmany=True\n is passed. You can do so by using the \nmany_init\n class method.\n\n\n @classmethod\n def many_init(cls, *args, **kwargs):\n # Instantiate the child serializer.\n kwargs['child'] = cls()\n # Instantiate the parent list serializer.\n return CustomListSerializer(*args, **kwargs)\n\n\n\n\n\nBaseSerializer\n\n\nBaseSerializer\n class that can be used to easily support alternative serialization and deserialization styles.\n\n\nThis class implements the same basic API as the \nSerializer\n class:\n\n\n\n\n.data\n - Returns the outgoing primitive representation.\n\n\n.is_valid()\n - Deserializes and validates incoming data.\n\n\n.validated_data\n - Returns the validated incoming data.\n\n\n.errors\n - Returns any errors during validation.\n\n\n.save()\n - Persists the validated data into an object instance.\n\n\n\n\nThere are four methods that can be overridden, depending on what functionality you want the serializer class to support:\n\n\n\n\n.to_representation()\n - Override this to support serialization, for read operations.\n\n\n.to_internal_value()\n - Override this to support deserialization, for write operations.\n\n\n.create()\n and \n.update()\n - Override either or both of these to support saving instances.\n\n\n\n\nBecause this class provides the same interface as the \nSerializer\n class, you can use it with the existing generic class based views exactly as you would for a regular \nSerializer\n or \nModelSerializer\n.\n\n\nThe only difference you'll notice when doing so is the \nBaseSerializer\n classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.\n\n\nRead-only \nBaseSerializer\n classes\n\n\nTo implement a read-only serializer using the \nBaseSerializer\n class, we just need to override the \n.to_representation()\n method. Let's take a look at an example using a simple Django model:\n\n\nclass HighScore(models.Model):\n created = models.DateTimeField(auto_now_add=True)\n player_name = models.CharField(max_length=10)\n score = models.IntegerField()\n\n\n\nIt's simple to create a read-only serializer for converting \nHighScore\n instances into primitive data types.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n\n\nWe can now use this class to serialize single \nHighScore\n instances:\n\n\n@api_view(['GET'])\ndef high_score(request, pk):\n instance = HighScore.objects.get(pk=pk)\n serializer = HighScoreSerializer(instance)\n return Response(serializer.data)\n\n\n\nOr use it to serialize multiple instances:\n\n\n@api_view(['GET'])\ndef all_high_scores(request):\n queryset = HighScore.objects.order_by('-score')\n serializer = HighScoreSerializer(queryset, many=True)\n return Response(serializer.data)\n\n\n\nRead-write \nBaseSerializer\n classes\n\n\nTo create a read-write serializer we first need to implement a \n.to_internal_value()\n method. This method returns the validated values that will be used to construct the object instance, and may raise a \nValidationError\n if the supplied data is in an incorrect format.\n\n\nOnce you've implemented \n.to_internal_value()\n, the basic validation API will be available on the serializer, and you will be able to use \n.is_valid()\n, \n.validated_data\n and \n.errors\n.\n\n\nIf you want to also support \n.save()\n you'll need to also implement either or both of the \n.create()\n and \n.update()\n methods.\n\n\nHere's a complete example of our previous \nHighScoreSerializer\n, that's been updated to support both read and write operations.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_internal_value(self, data):\n score = data.get('score')\n player_name = data.get('player_name')\n\n # Perform the data validation.\n if not score:\n raise ValidationError({\n 'score': 'This field is required.'\n })\n if not player_name:\n raise ValidationError({\n 'player_name': 'This field is required.'\n })\n if len(player_name) \n 10:\n raise ValidationError({\n 'player_name': 'May not be more than 10 characters.'\n })\n\n # Return the validated values. This will be available as\n # the `.validated_data` property.\n return {\n 'score': int(score),\n 'player_name': player_name\n }\n\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n def create(self, validated_data):\n return HighScore.objects.create(**validated_data)\n\n\n\nCreating new base classes\n\n\nThe \nBaseSerializer\n class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.\n\n\nThe following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.\n\n\nclass ObjectSerializer(serializers.BaseSerializer):\n \"\"\"\n A read-only serializer that coerces arbitrary complex objects\n into primitive representations.\n \"\"\"\n def to_representation(self, obj):\n for attribute_name in dir(obj):\n attribute = getattr(obj, attribute_name)\n if attribute_name('_'):\n # Ignore private attributes.\n pass\n elif hasattr(attribute, '__call__'):\n # Ignore methods and other callables.\n pass\n elif isinstance(attribute, (str, int, bool, float, type(None))):\n # Primitive types can be passed through unmodified.\n output[attribute_name] = attribute\n elif isinstance(attribute, list):\n # Recursively deal with items in lists.\n output[attribute_name] = [\n self.to_representation(item) for item in attribute\n ]\n elif isinstance(attribute, dict):\n # Recursively deal with items in dictionaries.\n output[attribute_name] = {\n str(key): self.to_representation(value)\n for key, value in attribute.items()\n }\n else:\n # Force anything else to its string representation.\n output[attribute_name] = str(attribute)\n\n\n\n\n\nAdvanced serializer usage\n\n\nOverriding serialization and deserialization behavior\n\n\nIf you need to alter the serialization, deserialization or validation of a serializer class you can do so by overriding the \n.to_representation()\n or \n.to_internal_value()\n methods.\n\n\nSome reasons this might be useful include...\n\n\n\n\nAdding new behavior for new serializer base classes.\n\n\nModifying the behavior slightly for an existing class.\n\n\nImproving serialization performance for a frequently accessed API endpoint that returns lots of data.\n\n\n\n\nThe signatures for these methods are as follows:\n\n\n.to_representation(self, obj)\n\n\nTakes the object instance that requires serialization, and should return a primitive representation. Typically this means returning a structure of built-in Python datatypes. The exact types that can be handled will depend on the render classes you have configured for your API.\n\n\n.to_internal_value(self, data)\n\n\nTakes the unvalidated incoming data as input and should return the validated data that will be made available as \nserializer.validated_data\n. The return value will also be passed to the \n.create()\n or \n.update()\n methods if \n.save()\n is called on the serializer class.\n\n\nIf any of the validation fails, then the method should raise a \nserializers.ValidationError(errors)\n. Typically the \nerrors\n argument here will be a dictionary mapping field names to error messages.\n\n\nThe \ndata\n argument passed to this method will normally be the value of \nrequest.data\n, so the datatype it provides will depend on the parser classes you have configured for your API.\n\n\nDynamically modifying fields\n\n\nOnce a serializer has been initialized, the dictionary of fields that are set on the serializer may be accessed using the \n.fields\n attribute. Accessing and modifying this attribute allows you to dynamically modify the serializer.\n\n\nModifying the \nfields\n argument directly allows you to do interesting things such as changing the arguments on serializer fields at runtime, rather than at the point of declaring the serializer.\n\n\nExample\n\n\nFor example, if you wanted to be able to set which fields should be used by a serializer at the point of initializing it, you could create a serializer class like so:\n\n\nclass DynamicFieldsModelSerializer(serializers.ModelSerializer):\n \"\"\"\n A ModelSerializer that takes an additional `fields` argument that\n controls which fields should be displayed.\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n # Don't pass the 'fields' arg up to the superclass\n fields = kwargs.pop('fields', None)\n\n # Instantiate the superclass normally\n super(DynamicFieldsModelSerializer, self).__init__(*args, **kwargs)\n\n if fields is not None:\n # Drop any fields that are not specified in the `fields` argument.\n allowed = set(fields)\n existing = set(self.fields.keys())\n for field_name in existing - allowed:\n self.fields.pop(field_name)\n\n\n\nThis would then allow you to do the following:\n\n\n class UserSerializer(DynamicFieldsModelSerializer):\n\n class Meta:\n\n model = User\n\n fields = ('id', 'username', 'email')\n\n\n\n print UserSerializer(user)\n{'id': 2, 'username': 'jonwatts', 'email': 'jon@example.com'}\n\n\n\n print UserSerializer(user, fields=('id', 'email'))\n{'id': 2, 'email': 'jon@example.com'}\n\n\n\nCustomizing the default fields\n\n\nREST framework 2 provided an API to allow developers to override how a \nModelSerializer\n class would automatically generate the default set of fields.\n\n\nThis API included the \n.get_field()\n, \n.get_pk_field()\n and other methods.\n\n\nBecause the serializers have been fundamentally redesigned with 3.0 this API no longer exists. You can still modify the fields that get created but you'll need to refer to the source code, and be aware that if the changes you make are against private bits of API then they may be subject to change.\n\n\nA new interface for controlling this behavior is currently planned for REST framework 3.1.\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nDjango REST marshmallow\n\n\nThe \ndjango-rest-marshmallow\n package provides an alternative implementation for serializers, using the python \nmarshmallow\n library. It exposes the same API as the REST framework serializers, and can be used as a drop-in replacement in some use-cases.\n\n\nSerpy\n\n\nThe \nserpy\n package is an alternative implementation for serializers that is built for speed. \nSerpy\n serializes complex datatypes to simple native types. The native types can be easily converted to JSON or any other format needed.\n\n\nMongoengineModelSerializer\n\n\nThe \ndjango-rest-framework-mongoengine\n package provides a \nMongoEngineModelSerializer\n serializer class that supports using MongoDB as the storage layer for Django REST framework.\n\n\nGeoFeatureModelSerializer\n\n\nThe \ndjango-rest-framework-gis\n package provides a \nGeoFeatureModelSerializer\n serializer class that supports GeoJSON both for read and write operations.\n\n\nHStoreSerializer\n\n\nThe \ndjango-rest-framework-hstore\n package provides an \nHStoreSerializer\n to support \ndjango-hstore\n \nDictionaryField\n model field and its \nschema-mode\n feature.",
+ "text": "Serializers\n\n\n\n\nExpanding the usefulness of the serializers is something that we would\nlike to address. However, it's not a trivial problem, and it\nwill take some serious design work.\n\n\n Russell Keith-Magee, \nDjango users group\n\n\n\n\nSerializers allow complex data such as querysets and model instances to be converted to native Python datatypes that can then be easily rendered into \nJSON\n, \nXML\n or other content types. Serializers also provide deserialization, allowing parsed data to be converted back into complex types, after first validating the incoming data.\n\n\nThe serializers in REST framework work very similarly to Django's \nForm\n and \nModelForm\n classes. We provide a \nSerializer\n class which gives you a powerful, generic way to control the output of your responses, as well as a \nModelSerializer\n class which provides a useful shortcut for creating serializers that deal with model instances and querysets.\n\n\nDeclaring Serializers\n\n\nLet's start by creating a simple object we can use for example purposes:\n\n\nfrom datetime import datetime\n\nclass Comment(object):\n def __init__(self, email, content, created=None):\n self.email = email\n self.content = content\n self.created = created or datetime.now()\n\ncomment = Comment(email='leila@example.com', content='foo bar')\n\n\n\nWe'll declare a serializer that we can use to serialize and deserialize data that corresponds to \nComment\n objects.\n\n\nDeclaring a serializer looks very similar to declaring a form:\n\n\nfrom rest_framework import serializers\n\nclass CommentSerializer(serializers.Serializer):\n email = serializers.EmailField()\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nSerializing objects\n\n\nWe can now use \nCommentSerializer\n to serialize a comment, or list of comments. Again, using the \nSerializer\n class looks a lot like using a \nForm\n class.\n\n\nserializer = CommentSerializer(comment)\nserializer.data\n# {'email': u'leila@example.com', 'content': u'foo bar', 'created': datetime.datetime(2012, 8, 22, 16, 20, 9, 822774)}\n\n\n\nAt this point we've translated the model instance into Python native datatypes. To finalise the serialization process we render the data into \njson\n.\n\n\nfrom rest_framework.renderers import JSONRenderer\n\njson = JSONRenderer().render(serializer.data)\njson\n# '{\"email\": \"leila@example.com\", \"content\": \"foo bar\", \"created\": \"2012-08-22T16:20:09.822\"}'\n\n\n\nDeserializing objects\n\n\nDeserialization is similar. First we parse a stream into Python native datatypes...\n\n\nfrom django.utils.six import BytesIO\nfrom rest_framework.parsers import JSONParser\n\nstream = BytesIO(json)\ndata = JSONParser().parse(stream)\n\n\n\n...then we restore those native datatypes into a dictionary of validated data.\n\n\nserializer = CommentSerializer(data=data)\nserializer.is_valid()\n# True\nserializer.validated_data\n# {'content': 'foo bar', 'email': 'leila@example.com', 'created': datetime.datetime(2012, 08, 22, 16, 20, 09, 822243)}\n\n\n\nSaving instances\n\n\nIf we want to be able to return complete object instances based on the validated data we need to implement one or both of the \n.create()\n and \nupdate()\n methods. For example:\n\n\nclass CommentSerializer(serializers.Serializer):\n email = serializers.EmailField()\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n def create(self, validated_data):\n return Comment(**validated_data)\n\n def update(self, instance, validated_data):\n instance.email = validated_data.get('email', instance.email)\n instance.content = validated_data.get('content', instance.content)\n instance.created = validated_data.get('created', instance.created)\n return instance\n\n\n\nIf your object instances correspond to Django models you'll also want to ensure that these methods save the object to the database. For example, if \nComment\n was a Django model, the methods might look like this:\n\n\n def create(self, validated_data):\n return Comment.objects.create(**validated_data)\n\n def update(self, instance, validated_data):\n instance.email = validated_data.get('email', instance.email)\n instance.content = validated_data.get('content', instance.content)\n instance.created = validated_data.get('created', instance.created)\n instance.save()\n return instance\n\n\n\nNow when deserializing data, we can call \n.save()\n to return an object instance, based on the validated data.\n\n\ncomment = serializer.save()\n\n\n\nCalling \n.save()\n will either create a new instance, or update an existing instance, depending on if an existing instance was passed when instantiating the serializer class:\n\n\n# .save() will create a new instance.\nserializer = CommentSerializer(data=data)\n\n# .save() will update the existing `comment` instance.\nserializer = CommentSerializer(comment, data=data)\n\n\n\nBoth the \n.create()\n and \n.update()\n methods are optional. You can implement either neither, one, or both of them, depending on the use-case for your serializer class.\n\n\nPassing additional attributes to \n.save()\n\n\nSometimes you'll want your view code to be able to inject additional data at the point of saving the instance. This additional data might include information like the current user, the current time, or anything else that is not part of the request data.\n\n\nYou can do so by including additional keyword arguments when calling \n.save()\n. For example:\n\n\nserializer.save(owner=request.user)\n\n\n\nAny additional keyword arguments will be included in the \nvalidated_data\n argument when \n.create()\n or \n.update()\n are called.\n\n\nOverriding \n.save()\n directly.\n\n\nIn some cases the \n.create()\n and \n.update()\n method names may not be meaningful. For example, in a contact form we may not be creating new instances, but instead sending an email or other message.\n\n\nIn these cases you might instead choose to override \n.save()\n directly, as being more readable and meaningful.\n\n\nFor example:\n\n\nclass ContactForm(serializers.Serializer):\n email = serializers.EmailField()\n message = serializers.CharField()\n\n def save(self):\n email = self.validated_data['email']\n message = self.validated_data['message']\n send_email(from=email, message=message)\n\n\n\nNote that in the case above we're now having to access the serializer \n.validated_data\n property directly.\n\n\nValidation\n\n\nWhen deserializing data, you always need to call \nis_valid()\n before attempting to access the validated data, or save an object instance. If any validation errors occur, the \n.errors\n property will contain a dictionary representing the resulting error messages. For example:\n\n\nserializer = CommentSerializer(data={'email': 'foobar', 'content': 'baz'})\nserializer.is_valid()\n# False\nserializer.errors\n# {'email': [u'Enter a valid e-mail address.'], 'created': [u'This field is required.']}\n\n\n\nEach key in the dictionary will be the field name, and the values will be lists of strings of any error messages corresponding to that field. The \nnon_field_errors\n key may also be present, and will list any general validation errors. The name of the \nnon_field_errors\n key may be customized using the \nNON_FIELD_ERRORS_KEY\n REST framework setting.\n\n\nWhen deserializing a list of items, errors will be returned as a list of dictionaries representing each of the deserialized items.\n\n\nRaising an exception on invalid data\n\n\nThe \n.is_valid()\n method takes an optional \nraise_exception\n flag that will cause it to raise a \nserializers.ValidationError\n exception if there are validation errors.\n\n\nThese exceptions are automatically dealt with by the default exception handler that REST framework provides, and will return \nHTTP 400 Bad Request\n responses by default.\n\n\n# Return a 400 response if the data was invalid.\nserializer.is_valid(raise_exception=True)\n\n\n\nField-level validation\n\n\nYou can specify custom field-level validation by adding \n.validate_\nfield_name\n methods to your \nSerializer\n subclass. These are similar to the \n.clean_\nfield_name\n methods on Django forms.\n\n\nThese methods take a single argument, which is the field value that requires validation.\n\n\nYour \nvalidate_\nfield_name\n methods should return the validated value or raise a \nserializers.ValidationError\n. For example:\n\n\nfrom rest_framework import serializers\n\nclass BlogPostSerializer(serializers.Serializer):\n title = serializers.CharField(max_length=100)\n content = serializers.CharField()\n\n def validate_title(self, value):\n \"\"\"\n Check that the blog post is about Django.\n \"\"\"\n if 'django' not in value.lower():\n raise serializers.ValidationError(\"Blog post is not about Django\")\n return value\n\n\n\n\n\nNote:\n If your \nfield_name\n is declared on your serializer with the parameter \nrequired=False\n then this validation step will not take place if the field is not included.\n\n\n\n\nObject-level validation\n\n\nTo do any other validation that requires access to multiple fields, add a method called \n.validate()\n to your \nSerializer\n subclass. This method takes a single argument, which is a dictionary of field values. It should raise a \nValidationError\n if necessary, or just return the validated values. For example:\n\n\nfrom rest_framework import serializers\n\nclass EventSerializer(serializers.Serializer):\n description = serializers.CharField(max_length=100)\n start = serializers.DateTimeField()\n finish = serializers.DateTimeField()\n\n def validate(self, data):\n \"\"\"\n Check that the start is before the stop.\n \"\"\"\n if data['start'] \n data['finish']:\n raise serializers.ValidationError(\"finish must occur after start\")\n return data\n\n\n\nValidators\n\n\nIndividual fields on a serializer can include validators, by declaring them on the field instance, for example:\n\n\ndef multiple_of_ten(value):\n if value % 10 != 0:\n raise serializers.ValidationError('Not a multiple of ten')\n\nclass GameRecord(serializers.Serializer):\n score = IntegerField(validators=[multiple_of_ten])\n ...\n\n\n\nSerializer classes can also include reusable validators that are applied to the complete set of field data. These validators are included by declaring them on an inner \nMeta\n class, like so:\n\n\nclass EventSerializer(serializers.Serializer):\n name = serializers.CharField()\n room_number = serializers.IntegerField(choices=[101, 102, 103, 201])\n date = serializers.DateField()\n\n class Meta:\n # Each room only has one event per day.\n validators = UniqueTogetherValidator(\n queryset=Event.objects.all(),\n fields=['room_number', 'date']\n )\n\n\n\nFor more information see the \nvalidators documentation\n.\n\n\nAccessing the initial data and instance\n\n\nWhen passing an initial object or queryset to a serializer instance, the object will be made available as \n.instance\n. If no initial object is passed then the \n.instance\n attribute will be \nNone\n.\n\n\nWhen passing data to a serializer instance, the unmodified data will be made available as \n.initial_data\n. If the data keyword argument is not passed then the \n.initial_data\n attribute will not exist.\n\n\nPartial updates\n\n\nBy default, serializers must be passed values for all required fields or they will raise validation errors. You can use the \npartial\n argument in order to allow partial updates.\n\n\n# Update `comment` with partial data\nserializer = CommentSerializer(comment, data={'content': u'foo bar'}, partial=True)\n\n\n\nDealing with nested objects\n\n\nThe previous examples are fine for dealing with objects that only have simple datatypes, but sometimes we also need to be able to represent more complex objects, where some of the attributes of an object might not be simple datatypes such as strings, dates or integers.\n\n\nThe \nSerializer\n class is itself a type of \nField\n, and can be used to represent relationships where one object type is nested inside another.\n\n\nclass UserSerializer(serializers.Serializer):\n email = serializers.EmailField()\n username = serializers.CharField(max_length=100)\n\nclass CommentSerializer(serializers.Serializer):\n user = UserSerializer()\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nIf a nested representation may optionally accept the \nNone\n value you should pass the \nrequired=False\n flag to the nested serializer.\n\n\nclass CommentSerializer(serializers.Serializer):\n user = UserSerializer(required=False) # May be an anonymous user.\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nSimilarly if a nested representation should be a list of items, you should pass the \nmany=True\n flag to the nested serialized.\n\n\nclass CommentSerializer(serializers.Serializer):\n user = UserSerializer(required=False)\n edits = EditItemSerializer(many=True) # A nested list of 'edit' items.\n content = serializers.CharField(max_length=200)\n created = serializers.DateTimeField()\n\n\n\nWritable nested representations\n\n\nWhen dealing with nested representations that support deserializing the data, any errors with nested objects will be nested under the field name of the nested object.\n\n\nserializer = CommentSerializer(data={'user': {'email': 'foobar', 'username': 'doe'}, 'content': 'baz'})\nserializer.is_valid()\n# False\nserializer.errors\n# {'user': {'email': [u'Enter a valid e-mail address.']}, 'created': [u'This field is required.']}\n\n\n\nSimilarly, the \n.validated_data\n property will include nested data structures.\n\n\nWriting \n.create()\n methods for nested representations\n\n\nIf you're supporting writable nested representations you'll need to write \n.create()\n or \n.update()\n methods that handle saving multiple objects.\n\n\nThe following example demonstrates how you might handle creating a user with a nested profile object.\n\n\nclass UserSerializer(serializers.ModelSerializer):\n profile = ProfileSerializer()\n\n class Meta:\n model = User\n fields = ('username', 'email', 'profile')\n\n def create(self, validated_data):\n profile_data = validated_data.pop('profile')\n user = User.objects.create(**validated_data)\n Profile.objects.create(user=user, **profile_data)\n return user\n\n\n\nWriting \n.update()\n methods for nested representations\n\n\nFor updates you'll want to think carefully about how to handle updates to relationships. For example if the data for the relationship is \nNone\n, or not provided, which of the following should occur?\n\n\n\n\nSet the relationship to \nNULL\n in the database.\n\n\nDelete the associated instance.\n\n\nIgnore the data and leave the instance as it is.\n\n\nRaise a validation error.\n\n\n\n\nHere's an example for an \nupdate()\n method on our previous \nUserSerializer\n class.\n\n\n def update(self, instance, validated_data):\n profile_data = validated_data.pop('profile')\n # Unless the application properly enforces that this field is\n # always set, the follow could raise a `DoesNotExist`, which\n # would need to be handled.\n profile = instance.profile\n\n instance.username = validated_data.get('username', instance.username)\n instance.email = validated_data.get('email', instance.email)\n instance.save()\n\n profile.is_premium_member = profile_data.get(\n 'is_premium_member',\n profile.is_premium_member\n )\n profile.has_support_contract = profile_data.get(\n 'has_support_contract',\n profile.has_support_contract\n )\n profile.save()\n\n return instance\n\n\n\nBecause the behavior of nested creates and updates can be ambiguous, and may require complex dependencies between related models, REST framework 3 requires you to always write these methods explicitly. The default \nModelSerializer\n \n.create()\n and \n.update()\n methods do not include support for writable nested representations.\n\n\nIt is possible that a third party package, providing automatic support some kinds of automatic writable nested representations may be released alongside the 3.1 release.\n\n\nHandling saving related instances in model manager classes\n\n\nAn alternative to saving multiple related instances in the serializer is to write custom model manager classes that handle creating the correct instances.\n\n\nFor example, suppose we wanted to ensure that \nUser\n instances and \nProfile\n instances are always created together as a pair. We might write a custom manager class that looks something like this:\n\n\nclass UserManager(models.Manager):\n ...\n\n def create(self, username, email, is_premium_member=False, has_support_contract=False):\n user = User(username=username, email=email)\n user.save()\n profile = Profile(\n user=user,\n is_premium_member=is_premium_member,\n has_support_contract=has_support_contract\n )\n profile.save()\n return user\n\n\n\nThis manager class now more nicely encapsulates that user instances and profile instances are always created at the same time. Our \n.create()\n method on the serializer class can now be re-written to use the new manager method.\n\n\ndef create(self, validated_data):\n return User.objects.create(\n username=validated_data['username'],\n email=validated_data['email']\n is_premium_member=validated_data['profile']['is_premium_member']\n has_support_contract=validated_data['profile']['has_support_contract']\n )\n\n\n\nFor more details on this approach see the Django documentation on \nmodel managers\n, and \nthis blogpost on using model and manager classes\n.\n\n\nDealing with multiple objects\n\n\nThe \nSerializer\n class can also handle serializing or deserializing lists of objects.\n\n\nSerializing multiple objects\n\n\nTo serialize a queryset or list of objects instead of a single object instance, you should pass the \nmany=True\n flag when instantiating the serializer. You can then pass a queryset or list of objects to be serialized.\n\n\nqueryset = Book.objects.all()\nserializer = BookSerializer(queryset, many=True)\nserializer.data\n# [\n# {'id': 0, 'title': 'The electric kool-aid acid test', 'author': 'Tom Wolfe'},\n# {'id': 1, 'title': 'If this is a man', 'author': 'Primo Levi'},\n# {'id': 2, 'title': 'The wind-up bird chronicle', 'author': 'Haruki Murakami'}\n# ]\n\n\n\nDeserializing multiple objects\n\n\nThe default behavior for deserializing multiple objects is to support multiple object creation, but not support multiple object updates. For more information on how to support or customize either of these cases, see the \nListSerializer\n documentation below.\n\n\nIncluding extra context\n\n\nThere are some cases where you need to provide extra context to the serializer in addition to the object being serialized. One common case is if you're using a serializer that includes hyperlinked relations, which requires the serializer to have access to the current request so that it can properly generate fully qualified URLs.\n\n\nYou can provide arbitrary additional context by passing a \ncontext\n argument when instantiating the serializer. For example:\n\n\nserializer = AccountSerializer(account, context={'request': request})\nserializer.data\n# {'id': 6, 'owner': u'denvercoder9', 'created': datetime.datetime(2013, 2, 12, 09, 44, 56, 678870), 'details': 'http://example.com/accounts/6/details'}\n\n\n\nThe context dictionary can be used within any serializer field logic, such as a custom \n.to_representation()\n method, by accessing the \nself.context\n attribute.\n\n\n\n\nModelSerializer\n\n\nOften you'll want serializer classes that map closely to Django model definitions.\n\n\nThe \nModelSerializer\n class provides a shortcut that lets you automatically create a \nSerializer\n class with fields that correspond to the Model fields.\n\n\nThe \nModelSerializer\n class is the same as a regular \nSerializer\n class, except that\n:\n\n\n\n\nIt will automatically generate a set of fields for you, based on the model.\n\n\nIt will automatically generate validators for the serializer, such as unique_together validators.\n\n\nIt includes simple default implementations of \n.create()\n and \n.update()\n.\n\n\n\n\nDeclaring a \nModelSerializer\n looks like this:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n\n\n\nBy default, all the model fields on the class will be mapped to a corresponding serializer fields.\n\n\nAny relationships such as foreign keys on the model will be mapped to \nPrimaryKeyRelatedField\n. Reverse relationships are not included by default unless explicitly included as described below.\n\n\nInspecting a \nModelSerializer\n\n\nSerializer classes generate helpful verbose representation strings, that allow you to fully inspect the state of their fields. This is particularly useful when working with \nModelSerializers\n where you want to determine what set of fields and validators are being automatically created for you.\n\n\nTo do so, open the Django shell, using \npython manage.py shell\n, then import the serializer class, instantiate it, and print the object representation\u2026\n\n\n from myapp.serializers import AccountSerializer\n\n serializer = AccountSerializer()\n\n print repr(serializer) # Or `print(repr(serializer))` in Python 3.x.\nAccountSerializer():\n id = IntegerField(label='ID', read_only=True)\n name = CharField(allow_blank=True, max_length=100, required=False)\n owner = PrimaryKeyRelatedField(queryset=User.objects.all())\n\n\n\nSpecifying which fields to include\n\n\nIf you only want a subset of the default fields to be used in a model serializer, you can do so using \nfields\n or \nexclude\n options, just as you would with a \nModelForm\n. It is strongly recommended that you explicitly set all fields that should be serialized using the \nfields\n attribute. This will make it less likely to result in unintentionally exposing data when your models change.\n\n\nFor example:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n\n\n\nYou can also set the \nfields\n attribute to the special value \n'__all__'\n to indicate that all fields in the model should be used.\n\n\nFor example:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = '__all__'\n\n\n\nYou can set the \nexclude\n attribute to a list of fields to be excluded from the serializer.\n\n\nFor example:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n exclude = ('users',)\n\n\n\nIn the example above, if the \nAccount\n model had 3 fields \naccount_name\n, \nusers\n, and \ncreated\n, this will result in the fields \naccount_name\n and \ncreated\n to be serialized.\n\n\nThe names in the \nfields\n and \nexclude\n attributes will normally map to model fields on the model class.\n\n\nAlternatively names in the \nfields\n options can map to properties or methods which take no arguments that exist on the model class.\n\n\nSpecifying nested serialization\n\n\nThe default \nModelSerializer\n uses primary keys for relationships, but you can also easily generate nested representations using the \ndepth\n option:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n depth = 1\n\n\n\nThe \ndepth\n option should be set to an integer value that indicates the depth of relationships that should be traversed before reverting to a flat representation.\n\n\nIf you want to customize the way the serialization is done you'll need to define the field yourself.\n\n\nSpecifying fields explicitly\n\n\nYou can add extra fields to a \nModelSerializer\n or override the default fields by declaring fields on the class, just as you would for a \nSerializer\n class.\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n url = serializers.CharField(source='get_absolute_url', read_only=True)\n groups = serializers.PrimaryKeyRelatedField(many=True)\n\n class Meta:\n model = Account\n\n\n\nExtra fields can correspond to any property or callable on the model.\n\n\nSpecifying read only fields\n\n\nYou may wish to specify multiple fields as read-only. Instead of adding each field explicitly with the \nread_only=True\n attribute, you may use the shortcut Meta option, \nread_only_fields\n.\n\n\nThis option should be a list or tuple of field names, and is declared as follows:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'users', 'created')\n read_only_fields = ('account_name',)\n\n\n\nModel fields which have \neditable=False\n set, and \nAutoField\n fields will be set to read-only by default, and do not need to be added to the \nread_only_fields\n option.\n\n\n\n\nNote\n: There is a special-case where a read-only field is part of a \nunique_together\n constraint at the model level. In this case the field is required by the serializer class in order to validate the constraint, but should also not be editable by the user.\n\n\nThe right way to deal with this is to specify the field explicitly on the serializer, providing both the \nread_only=True\n and \ndefault=\u2026\n keyword arguments.\n\n\nOne example of this is a read-only relation to the currently authenticated \nUser\n which is \nunique_together\n with another identifier. In this case you would declare the user field like so:\n\n\nuser = serializers.PrimaryKeyRelatedField(read_only=True, default=serializers.CurrentUserDefault())\n\n\n\nPlease review the \nValidators Documentation\n for details on the \nUniqueTogetherValidator\n and \nCurrentUserDefault\n classes.\n\n\n\n\nAdditional keyword arguments\n\n\nThere is also a shortcut allowing you to specify arbitrary additional keyword arguments on fields, using the \nextra_kwargs\n option. As in the case of \nread_only_fields\n, this means you do not need to explicitly declare the field on the serializer.\n\n\nThis option is a dictionary, mapping field names to a dictionary of keyword arguments. For example:\n\n\nclass CreateUserSerializer(serializers.ModelSerializer):\n class Meta:\n model = User\n fields = ('email', 'username', 'password')\n extra_kwargs = {'password': {'write_only': True}}\n\n def create(self, validated_data):\n user = User(\n email=validated_data['email'],\n username=validated_data['username']\n )\n user.set_password(validated_data['password'])\n user.save()\n return user\n\n\n\nRelational fields\n\n\nWhen serializing model instances, there are a number of different ways you might choose to represent relationships. The default representation for \nModelSerializer\n is to use the primary keys of the related instances.\n\n\nAlternative representations include serializing using hyperlinks, serializing complete nested representations, or serializing with a custom representation.\n\n\nFor full details see the \nserializer relations\n documentation.\n\n\nInheritance of the 'Meta' class\n\n\nThe inner \nMeta\n class on serializers is not inherited from parent classes by default. This is the same behavior as with Django's \nModel\n and \nModelForm\n classes. If you want the \nMeta\n class to inherit from a parent class you must do so explicitly. For example:\n\n\nclass AccountSerializer(MyBaseSerializer):\n class Meta(MyBaseSerializer.Meta):\n model = Account\n\n\n\nTypically we would recommend \nnot\n using inheritance on inner Meta classes, but instead declaring all options explicitly.\n\n\nCustomizing field mappings\n\n\nThe ModelSerializer class also exposes an API that you can override in order to alter how serializer fields are automatically determined when instantiating the serializer.\n\n\nNormally if a \nModelSerializer\n does not generate the fields you need by default then you should either add them to the class explicitly, or simply use a regular \nSerializer\n class instead. However in some cases you may want to create a new base class that defines how the serializer fields are created for any given model.\n\n\n.serializer_field_mapping\n\n\nA mapping of Django model classes to REST framework serializer classes. You can override this mapping to alter the default serializer classes that should be used for each model class.\n\n\n.serializer_related_field\n\n\nThis property should be the serializer field class, that is used for relational fields by default.\n\n\nFor \nModelSerializer\n this defaults to \nPrimaryKeyRelatedField\n.\n\n\nFor \nHyperlinkedModelSerializer\n this defaults to \nserializers.HyperlinkedRelatedField\n.\n\n\nserializer_url_field\n\n\nThe serializer field class that should be used for any \nurl\n field on the serializer.\n\n\nDefaults to \nserializers.HyperlinkedIdentityField\n\n\nserializer_choice_field\n\n\nThe serializer field class that should be used for any choice fields on the serializer.\n\n\nDefaults to \nserializers.ChoiceField\n\n\nThe field_class and field_kwargs API\n\n\nThe following methods are called to determine the class and keyword arguments for each field that should be automatically included on the serializer. Each of these methods should return a two tuple of \n(field_class, field_kwargs)\n.\n\n\n.build_standard_field(self, field_name, model_field)\n\n\nCalled to generate a serializer field that maps to a standard model field.\n\n\nThe default implementation returns a serializer class based on the \nserializer_field_mapping\n attribute.\n\n\n.build_relational_field(self, field_name, relation_info)\n\n\nCalled to generate a serializer field that maps to a relational model field.\n\n\nThe default implementation returns a serializer class based on the \nserializer_relational_field\n attribute.\n\n\nThe \nrelation_info\n argument is a named tuple, that contains \nmodel_field\n, \nrelated_model\n, \nto_many\n and \nhas_through_model\n properties.\n\n\n.build_nested_field(self, field_name, relation_info, nested_depth)\n\n\nCalled to generate a serializer field that maps to a relational model field, when the \ndepth\n option has been set.\n\n\nThe default implementation dynamically creates a nested serializer class based on either \nModelSerializer\n or \nHyperlinkedModelSerializer\n.\n\n\nThe \nnested_depth\n will be the value of the \ndepth\n option, minus one.\n\n\nThe \nrelation_info\n argument is a named tuple, that contains \nmodel_field\n, \nrelated_model\n, \nto_many\n and \nhas_through_model\n properties.\n\n\n.build_property_field(self, field_name, model_class)\n\n\nCalled to generate a serializer field that maps to a property or zero-argument method on the model class.\n\n\nThe default implementation returns a \nReadOnlyField\n class.\n\n\n.build_url_field(self, field_name, model_class)\n\n\nCalled to generate a serializer field for the serializer's own \nurl\n field. The default implementation returns a \nHyperlinkedIdentityField\n class.\n\n\n.build_unknown_field(self, field_name, model_class)\n\n\nCalled when the field name did not map to any model field or model property.\nThe default implementation raises an error, although subclasses may customize this behavior.\n\n\n\n\nHyperlinkedModelSerializer\n\n\nThe \nHyperlinkedModelSerializer\n class is similar to the \nModelSerializer\n class except that it uses hyperlinks to represent relationships, rather than primary keys.\n\n\nBy default the serializer will include a \nurl\n field instead of a primary key field.\n\n\nThe url field will be represented using a \nHyperlinkedIdentityField\n serializer field, and any relationships on the model will be represented using a \nHyperlinkedRelatedField\n serializer field.\n\n\nYou can explicitly include the primary key by adding it to the \nfields\n option, for example:\n\n\nclass AccountSerializer(serializers.HyperlinkedModelSerializer):\n class Meta:\n model = Account\n fields = ('url', 'id', 'account_name', 'users', 'created')\n\n\n\nHow hyperlinked views are determined\n\n\nThere needs to be a way of determining which views should be used for hyperlinking to model instances.\n\n\nBy default hyperlinks are expected to correspond to a view name that matches the style \n'{model_name}-detail'\n, and looks up the instance by a \npk\n keyword argument.\n\n\nYou can override a URL field view name and lookup field by using either, or both of, the \nview_name\n and \nlookup_field\n options in the \nextra_kwargs\n setting, like so:\n\n\nclass AccountSerializer(serializers.HyperlinkedModelSerializer):\n class Meta:\n model = Account\n fields = ('account_url', 'account_name', 'users', 'created')\n extra_kwargs = {\n 'url': {'view_name': 'accounts', 'lookup_field': 'account_name'}\n 'users': {'lookup_field': 'username'}\n }\n\n\n\nAlternatively you can set the fields on the serializer explicitly. For example:\n\n\nclass AccountSerializer(serializers.HyperlinkedModelSerializer):\n url = serializers.HyperlinkedIdentityField(\n view_name='accounts',\n lookup_field='slug'\n )\n users = serializers.HyperlinkedRelatedField(\n view_name='user-detail',\n lookup_field='username',\n many=True,\n read_only=True\n )\n\n class Meta:\n model = Account\n fields = ('url', 'account_name', 'users', 'created')\n\n\n\n\n\nTip\n: Properly matching together hyperlinked representations and your URL conf can sometimes be a bit fiddly. Printing the \nrepr\n of a \nHyperlinkedModelSerializer\n instance is a particularly useful way to inspect exactly which view names and lookup fields the relationships are expected to map too.\n\n\n\n\nChanging the URL field name\n\n\nThe name of the URL field defaults to 'url'. You can override this globally, by using the \nURL_FIELD_NAME\n setting.\n\n\n\n\nListSerializer\n\n\nThe \nListSerializer\n class provides the behavior for serializing and validating multiple objects at once. You won't \ntypically\n need to use \nListSerializer\n directly, but should instead simply pass \nmany=True\n when instantiating a serializer.\n\n\nWhen a serializer is instantiated and \nmany=True\n is passed, a \nListSerializer\n instance will be created. The serializer class then becomes a child of the parent \nListSerializer\n\n\nThere \nare\n a few use cases when you might want to customize the \nListSerializer\n behavior. For example:\n\n\n\n\nYou want to provide particular validation of the lists, such as always ensuring that there is at least one element in a list.\n\n\nYou want to customize the create or update behavior of multiple objects.\n\n\n\n\nFor these cases you can modify the class that is used when \nmany=True\n is passed, by using the \nlist_serializer_class\n option on the serializer \nMeta\n class.\n\n\nFor example:\n\n\nclass CustomListSerializer(serializers.ListSerializer):\n ...\n\nclass CustomSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = CustomListSerializer\n\n\n\nCustomizing multiple create\n\n\nThe default implementation for multiple object creation is to simply call \n.create()\n for each item in the list. If you want to customize this behavior, you'll need to customize the \n.create()\n method on \nListSerializer\n class that is used when \nmany=True\n is passed.\n\n\nFor example:\n\n\nclass BookListSerializer(serializers.ListSerializer):\n def create(self, validated_data):\n books = [Book(**item) for item in validated_data]\n return Book.objects.bulk_create(books)\n\nclass BookSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = BookListSerializer\n\n\n\nCustomizing multiple update\n\n\nBy default the \nListSerializer\n class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous.\n\n\nTo support multiple updates you'll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind:\n\n\n\n\nHow do you determine which instance should be updated for each item in the list of data?\n\n\nHow should insertions be handled? Are they invalid, or do they create new objects?\n\n\nHow should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid?\n\n\nHow should ordering be handled? Does changing the position of two items imply any state change or is it ignored?\n\n\n\n\nHere's an example of how you might choose to implement multiple updates:\n\n\nclass BookListSerializer(serializers.ListSerializer):\n def update(self, instance, validated_data):\n # Maps for id-\ninstance and id-\ndata item.\n book_mapping = {book.id: book for book in instance}\n data_mapping = {item['id']: item for item in validated_data}\n\n # Perform creations and updates.\n ret = []\n for book_id, data in data_mapping.items():\n book = book_mapping.get(book_id, None):\n if book is None:\n ret.append(self.child.create(data))\n else:\n ret.append(self.child.update(book, data))\n\n # Perform deletions.\n for book_id, book in book_mapping.items():\n if book_id not in data_mapping:\n book.delete()\n\n return ret\n\nclass BookSerializer(serializers.Serializer):\n # We need to identify elements in the list using their primary key,\n # so use a writable field here, rather than the default which would be read-only.\n id = serializers.IntegerField()\n\n ...\n class Meta:\n list_serializer_class = BookListSerializer\n\n\n\nIt is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the \nallow_add_remove\n behavior that was present in REST framework 2.\n\n\nCustomizing ListSerializer initialization\n\n\nWhen a serializer with \nmany=True\n is instantiated, we need to determine which arguments and keyword arguments should be passed to the \n.__init__()\n method for both the child \nSerializer\n class, and for the parent \nListSerializer\n class.\n\n\nThe default implementation is to pass all arguments to both classes, except for \nvalidators\n, and any custom keyword arguments, both of which are assumed to be intended for the child serializer class.\n\n\nOccasionally you might need to explicitly specify how the child and parent classes should be instantiated when \nmany=True\n is passed. You can do so by using the \nmany_init\n class method.\n\n\n @classmethod\n def many_init(cls, *args, **kwargs):\n # Instantiate the child serializer.\n kwargs['child'] = cls()\n # Instantiate the parent list serializer.\n return CustomListSerializer(*args, **kwargs)\n\n\n\n\n\nBaseSerializer\n\n\nBaseSerializer\n class that can be used to easily support alternative serialization and deserialization styles.\n\n\nThis class implements the same basic API as the \nSerializer\n class:\n\n\n\n\n.data\n - Returns the outgoing primitive representation.\n\n\n.is_valid()\n - Deserializes and validates incoming data.\n\n\n.validated_data\n - Returns the validated incoming data.\n\n\n.errors\n - Returns any errors during validation.\n\n\n.save()\n - Persists the validated data into an object instance.\n\n\n\n\nThere are four methods that can be overridden, depending on what functionality you want the serializer class to support:\n\n\n\n\n.to_representation()\n - Override this to support serialization, for read operations.\n\n\n.to_internal_value()\n - Override this to support deserialization, for write operations.\n\n\n.create()\n and \n.update()\n - Override either or both of these to support saving instances.\n\n\n\n\nBecause this class provides the same interface as the \nSerializer\n class, you can use it with the existing generic class based views exactly as you would for a regular \nSerializer\n or \nModelSerializer\n.\n\n\nThe only difference you'll notice when doing so is the \nBaseSerializer\n classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.\n\n\nRead-only \nBaseSerializer\n classes\n\n\nTo implement a read-only serializer using the \nBaseSerializer\n class, we just need to override the \n.to_representation()\n method. Let's take a look at an example using a simple Django model:\n\n\nclass HighScore(models.Model):\n created = models.DateTimeField(auto_now_add=True)\n player_name = models.CharField(max_length=10)\n score = models.IntegerField()\n\n\n\nIt's simple to create a read-only serializer for converting \nHighScore\n instances into primitive data types.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n\n\nWe can now use this class to serialize single \nHighScore\n instances:\n\n\n@api_view(['GET'])\ndef high_score(request, pk):\n instance = HighScore.objects.get(pk=pk)\n serializer = HighScoreSerializer(instance)\n return Response(serializer.data)\n\n\n\nOr use it to serialize multiple instances:\n\n\n@api_view(['GET'])\ndef all_high_scores(request):\n queryset = HighScore.objects.order_by('-score')\n serializer = HighScoreSerializer(queryset, many=True)\n return Response(serializer.data)\n\n\n\nRead-write \nBaseSerializer\n classes\n\n\nTo create a read-write serializer we first need to implement a \n.to_internal_value()\n method. This method returns the validated values that will be used to construct the object instance, and may raise a \nValidationError\n if the supplied data is in an incorrect format.\n\n\nOnce you've implemented \n.to_internal_value()\n, the basic validation API will be available on the serializer, and you will be able to use \n.is_valid()\n, \n.validated_data\n and \n.errors\n.\n\n\nIf you want to also support \n.save()\n you'll need to also implement either or both of the \n.create()\n and \n.update()\n methods.\n\n\nHere's a complete example of our previous \nHighScoreSerializer\n, that's been updated to support both read and write operations.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_internal_value(self, data):\n score = data.get('score')\n player_name = data.get('player_name')\n\n # Perform the data validation.\n if not score:\n raise ValidationError({\n 'score': 'This field is required.'\n })\n if not player_name:\n raise ValidationError({\n 'player_name': 'This field is required.'\n })\n if len(player_name) \n 10:\n raise ValidationError({\n 'player_name': 'May not be more than 10 characters.'\n })\n\n # Return the validated values. This will be available as\n # the `.validated_data` property.\n return {\n 'score': int(score),\n 'player_name': player_name\n }\n\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n def create(self, validated_data):\n return HighScore.objects.create(**validated_data)\n\n\n\nCreating new base classes\n\n\nThe \nBaseSerializer\n class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.\n\n\nThe following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.\n\n\nclass ObjectSerializer(serializers.BaseSerializer):\n \"\"\"\n A read-only serializer that coerces arbitrary complex objects\n into primitive representations.\n \"\"\"\n def to_representation(self, obj):\n for attribute_name in dir(obj):\n attribute = getattr(obj, attribute_name)\n if attribute_name('_'):\n # Ignore private attributes.\n pass\n elif hasattr(attribute, '__call__'):\n # Ignore methods and other callables.\n pass\n elif isinstance(attribute, (str, int, bool, float, type(None))):\n # Primitive types can be passed through unmodified.\n output[attribute_name] = attribute\n elif isinstance(attribute, list):\n # Recursively deal with items in lists.\n output[attribute_name] = [\n self.to_representation(item) for item in attribute\n ]\n elif isinstance(attribute, dict):\n # Recursively deal with items in dictionaries.\n output[attribute_name] = {\n str(key): self.to_representation(value)\n for key, value in attribute.items()\n }\n else:\n # Force anything else to its string representation.\n output[attribute_name] = str(attribute)\n\n\n\n\n\nAdvanced serializer usage\n\n\nOverriding serialization and deserialization behavior\n\n\nIf you need to alter the serialization, deserialization or validation of a serializer class you can do so by overriding the \n.to_representation()\n or \n.to_internal_value()\n methods.\n\n\nSome reasons this might be useful include...\n\n\n\n\nAdding new behavior for new serializer base classes.\n\n\nModifying the behavior slightly for an existing class.\n\n\nImproving serialization performance for a frequently accessed API endpoint that returns lots of data.\n\n\n\n\nThe signatures for these methods are as follows:\n\n\n.to_representation(self, obj)\n\n\nTakes the object instance that requires serialization, and should return a primitive representation. Typically this means returning a structure of built-in Python datatypes. The exact types that can be handled will depend on the render classes you have configured for your API.\n\n\n.to_internal_value(self, data)\n\n\nTakes the unvalidated incoming data as input and should return the validated data that will be made available as \nserializer.validated_data\n. The return value will also be passed to the \n.create()\n or \n.update()\n methods if \n.save()\n is called on the serializer class.\n\n\nIf any of the validation fails, then the method should raise a \nserializers.ValidationError(errors)\n. Typically the \nerrors\n argument here will be a dictionary mapping field names to error messages.\n\n\nThe \ndata\n argument passed to this method will normally be the value of \nrequest.data\n, so the datatype it provides will depend on the parser classes you have configured for your API.\n\n\nDynamically modifying fields\n\n\nOnce a serializer has been initialized, the dictionary of fields that are set on the serializer may be accessed using the \n.fields\n attribute. Accessing and modifying this attribute allows you to dynamically modify the serializer.\n\n\nModifying the \nfields\n argument directly allows you to do interesting things such as changing the arguments on serializer fields at runtime, rather than at the point of declaring the serializer.\n\n\nExample\n\n\nFor example, if you wanted to be able to set which fields should be used by a serializer at the point of initializing it, you could create a serializer class like so:\n\n\nclass DynamicFieldsModelSerializer(serializers.ModelSerializer):\n \"\"\"\n A ModelSerializer that takes an additional `fields` argument that\n controls which fields should be displayed.\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n # Don't pass the 'fields' arg up to the superclass\n fields = kwargs.pop('fields', None)\n\n # Instantiate the superclass normally\n super(DynamicFieldsModelSerializer, self).__init__(*args, **kwargs)\n\n if fields is not None:\n # Drop any fields that are not specified in the `fields` argument.\n allowed = set(fields)\n existing = set(self.fields.keys())\n for field_name in existing - allowed:\n self.fields.pop(field_name)\n\n\n\nThis would then allow you to do the following:\n\n\n class UserSerializer(DynamicFieldsModelSerializer):\n\n class Meta:\n\n model = User\n\n fields = ('id', 'username', 'email')\n\n\n\n print UserSerializer(user)\n{'id': 2, 'username': 'jonwatts', 'email': 'jon@example.com'}\n\n\n\n print UserSerializer(user, fields=('id', 'email'))\n{'id': 2, 'email': 'jon@example.com'}\n\n\n\nCustomizing the default fields\n\n\nREST framework 2 provided an API to allow developers to override how a \nModelSerializer\n class would automatically generate the default set of fields.\n\n\nThis API included the \n.get_field()\n, \n.get_pk_field()\n and other methods.\n\n\nBecause the serializers have been fundamentally redesigned with 3.0 this API no longer exists. You can still modify the fields that get created but you'll need to refer to the source code, and be aware that if the changes you make are against private bits of API then they may be subject to change.\n\n\nA new interface for controlling this behavior is currently planned for REST framework 3.1.\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nDjango REST marshmallow\n\n\nThe \ndjango-rest-marshmallow\n package provides an alternative implementation for serializers, using the python \nmarshmallow\n library. It exposes the same API as the REST framework serializers, and can be used as a drop-in replacement in some use-cases.\n\n\nSerpy\n\n\nThe \nserpy\n package is an alternative implementation for serializers that is built for speed. \nSerpy\n serializes complex datatypes to simple native types. The native types can be easily converted to JSON or any other format needed.\n\n\nMongoengineModelSerializer\n\n\nThe \ndjango-rest-framework-mongoengine\n package provides a \nMongoEngineModelSerializer\n serializer class that supports using MongoDB as the storage layer for Django REST framework.\n\n\nGeoFeatureModelSerializer\n\n\nThe \ndjango-rest-framework-gis\n package provides a \nGeoFeatureModelSerializer\n serializer class that supports GeoJSON both for read and write operations.\n\n\nHStoreSerializer\n\n\nThe \ndjango-rest-framework-hstore\n package provides an \nHStoreSerializer\n to support \ndjango-hstore\n \nDictionaryField\n model field and its \nschema-mode\n feature.",
"title": "Serializers"
},
{
@@ -1197,7 +1197,7 @@
},
{
"location": "/api-guide/serializers/#listserializer",
- "text": "The ListSerializer class provides the behavior for serializing and validating multiple objects at once. You won't typically need to use ListSerializer directly, but should instead simply pass many=True when instantiating a serializer. When a serializer is instantiated and many=True is passed, a ListSerializer instance will be created. The serializer class then becomes a child of the parent ListSerializer There are a few use cases when you might want to customize the ListSerializer behavior. For example: You want to provide particular validation of the lists, such as always ensuring that there is at least one element in a list. You want to customize the create or update behavior of multiple objects. For these cases you can modify the class that is used when many=True is passed, by using the list_serializer_class option on the serializer Meta class. For example: class CustomListSerializer(serializers.ListSerializer):\n ...\n\nclass CustomSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = CustomListSerializer Customizing multiple create The default implementation for multiple object creation is to simply call .create() for each item in the list. If you want to customize this behavior, you'll need to customize the .create() method on ListSerializer class that is used when many=True is passed. For example: class BookListSerializer(serializers.ListSerializer):\n def create(self, validated_data):\n books = [Book(**item) for item in validated_data]\n return Book.objects.bulk_create(books)\n\nclass BookSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = BookListSerializer Customizing multiple update By default the ListSerializer class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous. To support multiple updates you'll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind: How do you determine which instance should be updated for each item in the list of data? How should insertions be handled? Are they invalid, or do they create new objects? How should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid? How should ordering be handled? Does changing the position of two items imply any state change or is it ignored? Here's an example of how you might choose to implement multiple updates: class BookListSerializer(serializers.ListSerializer):\n def update(self, instance, validated_data):\n # Maps for id- instance and id- data item.\n book_mapping = {book.id: book for book in instance}\n data_mapping = {item['id']: item for item in validated_data}\n\n # Perform creations and updates.\n ret = []\n for book_id, data in data_mapping.items():\n book = book_mapping.get(book_id, None):\n if book is None:\n ret.append(self.child.create(data))\n else:\n ret.append(self.child.update(book, data))\n\n # Perform deletions.\n for book_id, book in book_mapping.items():\n if book_id not in data_mapping:\n book.delete()\n\n return ret\n\nclass BookSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = BookListSerializer It is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the allow_add_remove behavior that was present in REST framework 2. Customizing ListSerializer initialization When a serializer with many=True is instantiated, we need to determine which arguments and keyword arguments should be passed to the .__init__() method for both the child Serializer class, and for the parent ListSerializer class. The default implementation is to pass all arguments to both classes, except for validators , and any custom keyword arguments, both of which are assumed to be intended for the child serializer class. Occasionally you might need to explicitly specify how the child and parent classes should be instantiated when many=True is passed. You can do so by using the many_init class method. @classmethod\n def many_init(cls, *args, **kwargs):\n # Instantiate the child serializer.\n kwargs['child'] = cls()\n # Instantiate the parent list serializer.\n return CustomListSerializer(*args, **kwargs)",
+ "text": "The ListSerializer class provides the behavior for serializing and validating multiple objects at once. You won't typically need to use ListSerializer directly, but should instead simply pass many=True when instantiating a serializer. When a serializer is instantiated and many=True is passed, a ListSerializer instance will be created. The serializer class then becomes a child of the parent ListSerializer There are a few use cases when you might want to customize the ListSerializer behavior. For example: You want to provide particular validation of the lists, such as always ensuring that there is at least one element in a list. You want to customize the create or update behavior of multiple objects. For these cases you can modify the class that is used when many=True is passed, by using the list_serializer_class option on the serializer Meta class. For example: class CustomListSerializer(serializers.ListSerializer):\n ...\n\nclass CustomSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = CustomListSerializer Customizing multiple create The default implementation for multiple object creation is to simply call .create() for each item in the list. If you want to customize this behavior, you'll need to customize the .create() method on ListSerializer class that is used when many=True is passed. For example: class BookListSerializer(serializers.ListSerializer):\n def create(self, validated_data):\n books = [Book(**item) for item in validated_data]\n return Book.objects.bulk_create(books)\n\nclass BookSerializer(serializers.Serializer):\n ...\n class Meta:\n list_serializer_class = BookListSerializer Customizing multiple update By default the ListSerializer class does not support multiple updates. This is because the behavior that should be expected for insertions and deletions is ambiguous. To support multiple updates you'll need to do so explicitly. When writing your multiple update code make sure to keep the following in mind: How do you determine which instance should be updated for each item in the list of data? How should insertions be handled? Are they invalid, or do they create new objects? How should removals be handled? Do they imply object deletion, or removing a relationship? Should they be silently ignored, or are they invalid? How should ordering be handled? Does changing the position of two items imply any state change or is it ignored? Here's an example of how you might choose to implement multiple updates: class BookListSerializer(serializers.ListSerializer):\n def update(self, instance, validated_data):\n # Maps for id- instance and id- data item.\n book_mapping = {book.id: book for book in instance}\n data_mapping = {item['id']: item for item in validated_data}\n\n # Perform creations and updates.\n ret = []\n for book_id, data in data_mapping.items():\n book = book_mapping.get(book_id, None):\n if book is None:\n ret.append(self.child.create(data))\n else:\n ret.append(self.child.update(book, data))\n\n # Perform deletions.\n for book_id, book in book_mapping.items():\n if book_id not in data_mapping:\n book.delete()\n\n return ret\n\nclass BookSerializer(serializers.Serializer):\n # We need to identify elements in the list using their primary key,\n # so use a writable field here, rather than the default which would be read-only.\n id = serializers.IntegerField()\n\n ...\n class Meta:\n list_serializer_class = BookListSerializer It is possible that a third party package may be included alongside the 3.1 release that provides some automatic support for multiple update operations, similar to the allow_add_remove behavior that was present in REST framework 2. Customizing ListSerializer initialization When a serializer with many=True is instantiated, we need to determine which arguments and keyword arguments should be passed to the .__init__() method for both the child Serializer class, and for the parent ListSerializer class. The default implementation is to pass all arguments to both classes, except for validators , and any custom keyword arguments, both of which are assumed to be intended for the child serializer class. Occasionally you might need to explicitly specify how the child and parent classes should be instantiated when many=True is passed. You can do so by using the many_init class method. @classmethod\n def many_init(cls, *args, **kwargs):\n # Instantiate the child serializer.\n kwargs['child'] = cls()\n # Instantiate the parent list serializer.\n return CustomListSerializer(*args, **kwargs)",
"title": "ListSerializer"
},
{
@@ -1257,7 +1257,7 @@
},
{
"location": "/api-guide/fields/",
- "text": "Serializer fields\n\n\n\n\nEach field in a Form class is responsible not only for validating data, but also for \"cleaning\" it \n normalizing it to a consistent format.\n\n\n \nDjango documentation\n\n\n\n\nSerializer fields handle converting between primitive values and internal datatypes. They also deal with validating input values, as well as retrieving and setting the values from their parent objects.\n\n\n\n\nNote:\n The serializer fields are declared in \nfields.py\n, but by convention you should import them using \nfrom rest_framework import serializers\n and refer to fields as \nserializers.\nFieldName\n.\n\n\n\n\nCore arguments\n\n\nEach serializer field class constructor takes at least these arguments. Some Field classes take additional, field-specific arguments, but the following should always be accepted:\n\n\nread_only\n\n\nRead-only fields are included in the API output, but should not be included in the input during create or update operations. Any 'read_only' fields that are incorrectly included in the serializer input will be ignored.\n\n\nSet this to \nTrue\n to ensure that the field is used when serializing a representation, but is not used when creating or updating an instance during deserialization.\n\n\nDefaults to \nFalse\n\n\nwrite_only\n\n\nSet this to \nTrue\n to ensure that the field may be used when updating or creating an instance, but is not included when serializing the representation.\n\n\nDefaults to \nFalse\n\n\nrequired\n\n\nNormally an error will be raised if a field is not supplied during deserialization.\nSet to false if this field is not required to be present during deserialization.\n\n\nSetting this to \nFalse\n also allows the object attribute or dictionary key to be omitted from output when serializing the instance. If the key is not present it will simply not be included in the output representation.\n\n\nDefaults to \nTrue\n.\n\n\nallow_null\n\n\nNormally an error will be raised if \nNone\n is passed to a serializer field. Set this keyword argument to \nTrue\n if \nNone\n should be considered a valid value.\n\n\nDefaults to \nFalse\n\n\ndefault\n\n\nIf set, this gives the default value that will be used for the field if no input value is supplied. If not set the default behavior is to not populate the attribute at all.\n\n\nMay be set to a function or other callable, in which case the value will be evaluated each time it is used. When called, it will receive no arguments. If the callable has a \nset_context\n method, that will be called each time before getting the value with the field instance as only argument. This works the same way as for \nvalidators\n.\n\n\nNote that setting a \ndefault\n value implies that the field is not required. Including both the \ndefault\n and \nrequired\n keyword arguments is invalid and will raise an error.\n\n\nsource\n\n\nThe name of the attribute that will be used to populate the field. May be a method that only takes a \nself\n argument, such as \nURLField(source='get_absolute_url')\n, or may use dotted notation to traverse attributes, such as \nEmailField(source='user.email')\n.\n\n\nThe value \nsource='*'\n has a special meaning, and is used to indicate that the entire object should be passed through to the field. This can be useful for creating nested representations, or for fields which require access to the complete object in order to determine the output representation.\n\n\nDefaults to the name of the field.\n\n\nvalidators\n\n\nA list of validator functions which should be applied to the incoming field input, and which either raise a validation error or simply return. Validator functions should typically raise \nserializers.ValidationError\n, but Django's built-in \nValidationError\n is also supported for compatibility with validators defined in the Django codebase or third party Django packages.\n\n\nerror_messages\n\n\nA dictionary of error codes to error messages.\n\n\nlabel\n\n\nA short text string that may be used as the name of the field in HTML form fields or other descriptive elements.\n\n\nhelp_text\n\n\nA text string that may be used as a description of the field in HTML form fields or other descriptive elements.\n\n\ninitial\n\n\nA value that should be used for pre-populating the value of HTML form fields.\n\n\nstyle\n\n\nA dictionary of key-value pairs that can be used to control how renderers should render the field.\n\n\nTwo examples here are \n'input_type'\n and \n'base_template'\n:\n\n\n# Use \ninput type=\"password\"\n for the input.\npassword = serializers.CharField(\n style={'input_type': 'password'}\n)\n\n# Use a radio input instead of a select input.\ncolor_channel = serializers.ChoiceField(\n choices=['red', 'green', 'blue']\n style = {'base_template': 'radio.html'}\n}\n\n\n\nFor more details see the \nHTML \n Forms\n documentation.\n\n\n\n\nBoolean fields\n\n\nBooleanField\n\n\nA boolean representation.\n\n\nWhen using HTML encoded form input be aware that omitting a value will always be treated as setting a field to \nFalse\n, even if it has a \ndefault=True\n option specified. This is because HTML checkbox inputs represent the unchecked state by omitting the value, so REST framework treats omission as if it is an empty checkbox input.\n\n\nCorresponds to \ndjango.db.models.fields.BooleanField\n.\n\n\nSignature:\n \nBooleanField()\n\n\nNullBooleanField\n\n\nA boolean representation that also accepts \nNone\n as a valid value.\n\n\nCorresponds to \ndjango.db.models.fields.NullBooleanField\n.\n\n\nSignature:\n \nNullBooleanField()\n\n\n\n\nString fields\n\n\nCharField\n\n\nA text representation. Optionally validates the text to be shorter than \nmax_length\n and longer than \nmin_length\n.\n\n\nCorresponds to \ndjango.db.models.fields.CharField\n or \ndjango.db.models.fields.TextField\n.\n\n\nSignature:\n \nCharField(max_length=None, min_length=None, allow_blank=False, trim_whitespace=True)\n\n\n\n\nmax_length\n - Validates that the input contains no more than this number of characters.\n\n\nmin_length\n - Validates that the input contains no fewer than this number of characters.\n\n\nallow_blank\n - If set to \nTrue\n then the empty string should be considered a valid value. If set to \nFalse\n then the empty string is considered invalid and will raise a validation error. Defaults to \nFalse\n.\n\n\ntrim_whitespace\n - If set to \nTrue\n then leading and trailing whitespace is trimmed. Defaults to \nTrue\n.\n\n\n\n\nThe \nallow_null\n option is also available for string fields, although its usage is discouraged in favor of \nallow_blank\n. It is valid to set both \nallow_blank=True\n and \nallow_null=True\n, but doing so means that there will be two differing types of empty value permissible for string representations, which can lead to data inconsistencies and subtle application bugs.\n\n\nEmailField\n\n\nA text representation, validates the text to be a valid e-mail address.\n\n\nCorresponds to \ndjango.db.models.fields.EmailField\n\n\nSignature:\n \nEmailField(max_length=None, min_length=None, allow_blank=False)\n\n\nRegexField\n\n\nA text representation, that validates the given value matches against a certain regular expression.\n\n\nCorresponds to \ndjango.forms.fields.RegexField\n.\n\n\nSignature:\n \nRegexField(regex, max_length=None, min_length=None, allow_blank=False)\n\n\nThe mandatory \nregex\n argument may either be a string, or a compiled python regular expression object.\n\n\nUses Django's \ndjango.core.validators.RegexValidator\n for validation.\n\n\nSlugField\n\n\nA \nRegexField\n that validates the input against the pattern \n[a-zA-Z0-9_-]+\n.\n\n\nCorresponds to \ndjango.db.models.fields.SlugField\n.\n\n\nSignature:\n \nSlugField(max_length=50, min_length=None, allow_blank=False)\n\n\nURLField\n\n\nA \nRegexField\n that validates the input against a URL matching pattern. Expects fully qualified URLs of the form \nhttp://\nhost\n/\npath\n.\n\n\nCorresponds to \ndjango.db.models.fields.URLField\n. Uses Django's \ndjango.core.validators.URLValidator\n for validation.\n\n\nSignature:\n \nURLField(max_length=200, min_length=None, allow_blank=False)\n\n\nUUIDField\n\n\nA field that ensures the input is a valid UUID string. The \nto_internal_value\n method will return a \nuuid.UUID\n instance. On output the field will return a string in the canonical hyphenated format, for example:\n\n\n\"de305d54-75b4-431b-adb2-eb6b9e546013\"\n\n\n\nSignature:\n \nUUIDField(format='hex_verbose')\n\n\n\n\nformat\n: Determines the representation format of the uuid value\n\n\n'hex_verbose'\n - The cannoncical hex representation, including hyphens: \n\"5ce0e9a5-5ffa-654b-cee0-1238041fb31a\"\n\n\n'hex'\n - The compact hex representation of the UUID, not including hyphens: \n\"5ce0e9a55ffa654bcee01238041fb31a\"\n\n\n'int'\n - A 128 bit integer representation of the UUID: \n\"123456789012312313134124512351145145114\"\n\n\n'urn'\n - RFC 4122 URN representation of the UUID: \n\"urn:uuid:5ce0e9a5-5ffa-654b-cee0-1238041fb31a\"\n\n Changing the \nformat\n parameters only affects representation values. All formats are accepted by \nto_internal_value\n\n\n\n\n\n\n\n\nFilePathField\n\n\nA field whose choices are limited to the filenames in a certain directory on the filesystem\n\n\nCorresponds to \ndjango.forms.fields.FilePathField\n.\n\n\nSignature:\n \nFilePathField(path, match=None, recursive=False, allow_files=True, allow_folders=False, required=None, **kwargs)\n\n\n\n\npath\n - The absolute filesystem path to a directory from which this FilePathField should get its choice.\n\n\nmatch\n - A regular expression, as a string, that FilePathField will use to filter filenames.\n\n\nrecursive\n - Specifies whether all subdirectories of path should be included. Default is \nFalse\n.\n\n\nallow_files\n - Specifies whether files in the specified location should be included. Default is \nTrue\n. Either this or \nallow_folders\n must be \nTrue\n.\n\n\nallow_folders\n - Specifies whether folders in the specified location should be included. Default is \nFalse\n. Either this or \nallow_files\n must be \nTrue\n.\n\n\n\n\nIPAddressField\n\n\nA field that ensures the input is a valid IPv4 or IPv6 string.\n\n\nCorresponds to \ndjango.forms.fields.IPAddressField\n and \ndjango.forms.fields.GenericIPAddressField\n.\n\n\nSignature\n: \nIPAddressField(protocol='both', unpack_ipv4=False, **options)\n\n\n\n\nprotocol\n Limits valid inputs to the specified protocol. Accepted values are 'both' (default), 'IPv4' or 'IPv6'. Matching is case insensitive.\n\n\nunpack_ipv4\n Unpacks IPv4 mapped addresses like ::ffff:192.0.2.1. If this option is enabled that address would be unpacked to 192.0.2.1. Default is disabled. Can only be used when protocol is set to 'both'.\n\n\n\n\n\n\nNumeric fields\n\n\nIntegerField\n\n\nAn integer representation.\n\n\nCorresponds to \ndjango.db.models.fields.IntegerField\n, \ndjango.db.models.fields.SmallIntegerField\n, \ndjango.db.models.fields.PositiveIntegerField\n and \ndjango.db.models.fields.PositiveSmallIntegerField\n.\n\n\nSignature\n: \nIntegerField(max_value=None, min_value=None)\n\n\n\n\nmax_value\n Validate that the number provided is no greater than this value.\n\n\nmin_value\n Validate that the number provided is no less than this value.\n\n\n\n\nFloatField\n\n\nA floating point representation.\n\n\nCorresponds to \ndjango.db.models.fields.FloatField\n.\n\n\nSignature\n: \nFloatField(max_value=None, min_value=None)\n\n\n\n\nmax_value\n Validate that the number provided is no greater than this value.\n\n\nmin_value\n Validate that the number provided is no less than this value.\n\n\n\n\nDecimalField\n\n\nA decimal representation, represented in Python by a \nDecimal\n instance.\n\n\nCorresponds to \ndjango.db.models.fields.DecimalField\n.\n\n\nSignature\n: \nDecimalField(max_digits, decimal_places, coerce_to_string=None, max_value=None, min_value=None)\n\n\n\n\nmax_digits\n The maximum number of digits allowed in the number. Note that this number must be greater than or equal to decimal_places.\n\n\ndecimal_places\n The number of decimal places to store with the number.\n\n\ncoerce_to_string\n Set to \nTrue\n if string values should be returned for the representation, or \nFalse\n if \nDecimal\n objects should be returned. Defaults to the same value as the \nCOERCE_DECIMAL_TO_STRING\n settings key, which will be \nTrue\n unless overridden. If \nDecimal\n objects are returned by the serializer, then the final output format will be determined by the renderer.\n\n\nmax_value\n Validate that the number provided is no greater than this value.\n\n\nmin_value\n Validate that the number provided is no less than this value.\n\n\n\n\nExample usage\n\n\nTo validate numbers up to 999 with a resolution of 2 decimal places, you would use:\n\n\nserializers.DecimalField(max_digits=5, decimal_places=2)\n\n\n\nAnd to validate numbers up to anything less than one billion with a resolution of 10 decimal places:\n\n\nserializers.DecimalField(max_digits=19, decimal_places=10)\n\n\n\nThis field also takes an optional argument, \ncoerce_to_string\n. If set to \nTrue\n the representation will be output as a string. If set to \nFalse\n the representation will be left as a \nDecimal\n instance and the final representation will be determined by the renderer.\n\n\nIf unset, this will default to the same value as the \nCOERCE_DECIMAL_TO_STRING\n setting, which is \nTrue\n unless set otherwise.\n\n\n\n\nDate and time fields\n\n\nDateTimeField\n\n\nA date and time representation.\n\n\nCorresponds to \ndjango.db.models.fields.DateTimeField\n.\n\n\nSignature:\n \nDateTimeField(format=None, input_formats=None)\n\n\n\n\nformat\n - A string representing the output format. If not specified, this defaults to the same value as the \nDATETIME_FORMAT\n settings key, which will be \n'iso-8601'\n unless set. Setting to a format string indicates that \nto_representation\n return values should be coerced to string output. Format strings are described below. Setting this value to \nNone\n indicates that Python \ndatetime\n objects should be returned by \nto_representation\n. In this case the datetime encoding will be determined by the renderer.\n\n\ninput_formats\n - A list of strings representing the input formats which may be used to parse the date. If not specified, the \nDATETIME_INPUT_FORMATS\n setting will be used, which defaults to \n['iso-8601']\n.\n\n\n\n\nDateTimeField\n format strings.\n\n\nFormat strings may either be \nPython strftime formats\n which explicitly specify the format, or the special string \n'iso-8601'\n, which indicates that \nISO 8601\n style datetimes should be used. (eg \n'2013-01-29T12:34:56.000000Z'\n)\n\n\nWhen a value of \nNone\n is used for the format \ndatetime\n objects will be returned by \nto_representation\n and the final output representation will determined by the renderer class.\n\n\nIn the case of JSON this means the default datetime representation uses the \nECMA 262 date time string specification\n. This is a subset of ISO 8601 which uses millisecond precision, and includes the 'Z' suffix for the UTC timezone, for example: \n2013-01-29T12:34:56.123Z\n.\n\n\nauto_now\n and \nauto_now_add\n model fields.\n\n\nWhen using \nModelSerializer\n or \nHyperlinkedModelSerializer\n, note that any model fields with \nauto_now=True\n or \nauto_now_add=True\n will use serializer fields that are \nread_only=True\n by default.\n\n\nIf you want to override this behavior, you'll need to declare the \nDateTimeField\n explicitly on the serializer. For example:\n\n\nclass CommentSerializer(serializers.ModelSerializer):\n created = serializers.DateTimeField()\n\n class Meta:\n model = Comment\n\n\n\nDateField\n\n\nA date representation.\n\n\nCorresponds to \ndjango.db.models.fields.DateField\n\n\nSignature:\n \nDateField(format=None, input_formats=None)\n\n\n\n\nformat\n - A string representing the output format. If not specified, this defaults to the same value as the \nDATE_FORMAT\n settings key, which will be \n'iso-8601'\n unless set. Setting to a format string indicates that \nto_representation\n return values should be coerced to string output. Format strings are described below. Setting this value to \nNone\n indicates that Python \ndate\n objects should be returned by \nto_representation\n. In this case the date encoding will be determined by the renderer.\n\n\ninput_formats\n - A list of strings representing the input formats which may be used to parse the date. If not specified, the \nDATE_INPUT_FORMATS\n setting will be used, which defaults to \n['iso-8601']\n.\n\n\n\n\nDateField\n format strings\n\n\nFormat strings may either be \nPython strftime formats\n which explicitly specify the format, or the special string \n'iso-8601'\n, which indicates that \nISO 8601\n style dates should be used. (eg \n'2013-01-29'\n)\n\n\nTimeField\n\n\nA time representation.\n\n\nCorresponds to \ndjango.db.models.fields.TimeField\n\n\nSignature:\n \nTimeField(format=None, input_formats=None)\n\n\n\n\nformat\n - A string representing the output format. If not specified, this defaults to the same value as the \nTIME_FORMAT\n settings key, which will be \n'iso-8601'\n unless set. Setting to a format string indicates that \nto_representation\n return values should be coerced to string output. Format strings are described below. Setting this value to \nNone\n indicates that Python \ntime\n objects should be returned by \nto_representation\n. In this case the time encoding will be determined by the renderer.\n\n\ninput_formats\n - A list of strings representing the input formats which may be used to parse the date. If not specified, the \nTIME_INPUT_FORMATS\n setting will be used, which defaults to \n['iso-8601']\n.\n\n\n\n\nTimeField\n format strings\n\n\nFormat strings may either be \nPython strftime formats\n which explicitly specify the format, or the special string \n'iso-8601'\n, which indicates that \nISO 8601\n style times should be used. (eg \n'12:34:56.000000'\n)\n\n\nDurationField\n\n\nA Duration representation.\nCorresponds to \ndjango.db.models.fields.DurationField\n\n\nThe \nvalidated_data\n for these fields will contain a \ndatetime.timedelta\n instance.\nThe representation is a string following this format \n'[DD] [HH:[MM:]]ss[.uuuuuu]'\n.\n\n\nNote:\n This field is only available with Django versions \n= 1.8.\n\n\nSignature:\n \nDurationField()\n\n\n\n\nChoice selection fields\n\n\nChoiceField\n\n\nA field that can accept a value out of a limited set of choices.\n\n\nUsed by \nModelSerializer\n to automatically generate fields if the corresponding model field includes a \nchoices=\u2026\n argument.\n\n\nSignature:\n \nChoiceField(choices)\n\n\n\n\nchoices\n - A list of valid values, or a list of \n(key, display_name)\n tuples.\n\n\nallow_blank\n - If set to \nTrue\n then the empty string should be considered a valid value. If set to \nFalse\n then the empty string is considered invalid and will raise a validation error. Defaults to \nFalse\n.\n\n\nhtml_cutoff\n - If set this will be the maximum number of choices that will be displayed by a HTML select drop down. Can be used to ensure that automatically generated ChoiceFields with very large possible selections do not prevent a template from rendering. Defaults to \nNone\n.\n\n\nhtml_cutoff_text\n - If set this will display a textual indicator if the maximum number of items have been cutoff in an HTML select drop down. Defaults to \n\"More than {count} items\u2026\"\n\n\n\n\nBoth the \nallow_blank\n and \nallow_null\n are valid options on \nChoiceField\n, although it is highly recommended that you only use one and not both. \nallow_blank\n should be preferred for textual choices, and \nallow_null\n should be preferred for numeric or other non-textual choices.\n\n\nMultipleChoiceField\n\n\nA field that can accept a set of zero, one or many values, chosen from a limited set of choices. Takes a single mandatory argument. \nto_internal_value\n returns a \nset\n containing the selected values.\n\n\nSignature:\n \nMultipleChoiceField(choices)\n\n\n\n\nchoices\n - A list of valid values, or a list of \n(key, display_name)\n tuples.\n\n\nallow_blank\n - If set to \nTrue\n then the empty string should be considered a valid value. If set to \nFalse\n then the empty string is considered invalid and will raise a validation error. Defaults to \nFalse\n.\n\n\nhtml_cutoff\n - If set this will be the maximum number of choices that will be displayed by a HTML select drop down. Can be used to ensure that automatically generated ChoiceFields with very large possible selections do not prevent a template from rendering. Defaults to \nNone\n.\n\n\nhtml_cutoff_text\n - If set this will display a textual indicator if the maximum number of items have been cutoff in an HTML select drop down. Defaults to \n\"More than {count} items\u2026\"\n\n\n\n\nAs with \nChoiceField\n, both the \nallow_blank\n and \nallow_null\n options are valid, although it is highly recommended that you only use one and not both. \nallow_blank\n should be preferred for textual choices, and \nallow_null\n should be preferred for numeric or other non-textual choices.\n\n\n\n\nFile upload fields\n\n\nParsers and file uploads.\n\n\nThe \nFileField\n and \nImageField\n classes are only suitable for use with \nMultiPartParser\n or \nFileUploadParser\n. Most parsers, such as e.g. JSON don't support file uploads.\nDjango's regular \nFILE_UPLOAD_HANDLERS\n are used for handling uploaded files.\n\n\nFileField\n\n\nA file representation. Performs Django's standard FileField validation.\n\n\nCorresponds to \ndjango.forms.fields.FileField\n.\n\n\nSignature:\n \nFileField(max_length=None, allow_empty_file=False, use_url=UPLOADED_FILES_USE_URL)\n\n\n\n\nmax_length\n - Designates the maximum length for the file name.\n\n\nallow_empty_file\n - Designates if empty files are allowed.\n\n\nuse_url\n - If set to \nTrue\n then URL string values will be used for the output representation. If set to \nFalse\n then filename string values will be used for the output representation. Defaults to the value of the \nUPLOADED_FILES_USE_URL\n settings key, which is \nTrue\n unless set otherwise.\n\n\n\n\nImageField\n\n\nAn image representation. Validates the uploaded file content as matching a known image format.\n\n\nCorresponds to \ndjango.forms.fields.ImageField\n.\n\n\nSignature:\n \nImageField(max_length=None, allow_empty_file=False, use_url=UPLOADED_FILES_USE_URL)\n\n\n\n\nmax_length\n - Designates the maximum length for the file name.\n\n\nallow_empty_file\n - Designates if empty files are allowed.\n\n\nuse_url\n - If set to \nTrue\n then URL string values will be used for the output representation. If set to \nFalse\n then filename string values will be used for the output representation. Defaults to the value of the \nUPLOADED_FILES_USE_URL\n settings key, which is \nTrue\n unless set otherwise.\n\n\n\n\nRequires either the \nPillow\n package or \nPIL\n package. The \nPillow\n package is recommended, as \nPIL\n is no longer actively maintained.\n\n\n\n\nComposite fields\n\n\nListField\n\n\nA field class that validates a list of objects.\n\n\nSignature\n: \nListField(child)\n\n\n\n\nchild\n - A field instance that should be used for validating the objects in the list. If this argument is not provided then objects in the list will not be validated.\n\n\n\n\nFor example, to validate a list of integers you might use something like the following:\n\n\nscores = serializers.ListField(\n child=serializers.IntegerField(min_value=0, max_value=100)\n)\n\n\n\nThe \nListField\n class also supports a declarative style that allows you to write reusable list field classes.\n\n\nclass StringListField(serializers.ListField):\n child = serializers.CharField()\n\n\n\nWe can now reuse our custom \nStringListField\n class throughout our application, without having to provide a \nchild\n argument to it.\n\n\nDictField\n\n\nA field class that validates a dictionary of objects. The keys in \nDictField\n are always assumed to be string values.\n\n\nSignature\n: \nDictField(child)\n\n\n\n\nchild\n - A field instance that should be used for validating the values in the dictionary. If this argument is not provided then values in the mapping will not be validated.\n\n\n\n\nFor example, to create a field that validates a mapping of strings to strings, you would write something like this:\n\n\ndocument = DictField(child=CharField())\n\n\n\nYou can also use the declarative style, as with \nListField\n. For example:\n\n\nclass DocumentField(DictField):\n child = CharField()\n\n\n\nJSONField\n\n\nA field class that validates that the incoming data structure consists of valid JSON primitives. In its alternate binary mode, it will represent and validate JSON-encoded binary strings.\n\n\nSignature\n: \nJSONField(binary)\n\n\n\n\nbinary\n - If set to \nTrue\n then the field will output and validate a JSON encoded string, rather than a primitive data structure. Defaults to \nFalse\n.\n\n\n\n\n\n\nMiscellaneous fields\n\n\nReadOnlyField\n\n\nA field class that simply returns the value of the field without modification.\n\n\nThis field is used by default with \nModelSerializer\n when including field names that relate to an attribute rather than a model field.\n\n\nSignature\n: \nReadOnlyField()\n\n\nFor example, is \nhas_expired\n was a property on the \nAccount\n model, then the following serializer would automatically generate it as a \nReadOnlyField\n:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'has_expired')\n\n\n\nHiddenField\n\n\nA field class that does not take a value based on user input, but instead takes its value from a default value or callable.\n\n\nSignature\n: \nHiddenField()\n\n\nFor example, to include a field that always provides the current time as part of the serializer validated data, you would use the following:\n\n\nmodified = serializers.HiddenField(default=timezone.now)\n\n\n\nThe \nHiddenField\n class is usually only needed if you have some validation that needs to run based on some pre-provided field values, but you do not want to expose all of those fields to the end user.\n\n\nFor further examples on \nHiddenField\n see the \nvalidators\n documentation.\n\n\nModelField\n\n\nA generic field that can be tied to any arbitrary model field. The \nModelField\n class delegates the task of serialization/deserialization to its associated model field. This field can be used to create serializer fields for custom model fields, without having to create a new custom serializer field.\n\n\nThis field is used by \nModelSerializer\n to correspond to custom model field classes.\n\n\nSignature:\n \nModelField(model_field=\nDjango ModelField instance\n)\n\n\nThe \nModelField\n class is generally intended for internal use, but can be used by your API if needed. In order to properly instantiate a \nModelField\n, it must be passed a field that is attached to an instantiated model. For example: \nModelField(model_field=MyModel()._meta.get_field('custom_field'))\n\n\nSerializerMethodField\n\n\nThis is a read-only field. It gets its value by calling a method on the serializer class it is attached to. It can be used to add any sort of data to the serialized representation of your object.\n\n\nSignature\n: \nSerializerMethodField(method_name=None)\n\n\n\n\nmethod_name\n - The name of the method on the serializer to be called. If not included this defaults to \nget_\nfield_name\n.\n\n\n\n\nThe serializer method referred to by the \nmethod_name\n argument should accept a single argument (in addition to \nself\n), which is the object being serialized. It should return whatever you want to be included in the serialized representation of the object. For example:\n\n\nfrom django.contrib.auth.models import User\nfrom django.utils.timezone import now\nfrom rest_framework import serializers\n\nclass UserSerializer(serializers.ModelSerializer):\n days_since_joined = serializers.SerializerMethodField()\n\n class Meta:\n model = User\n\n def get_days_since_joined(self, obj):\n return (now() - obj.date_joined).days\n\n\n\n\n\nCustom fields\n\n\nIf you want to create a custom field, you'll need to subclass \nField\n and then override either one or both of the \n.to_representation()\n and \n.to_internal_value()\n methods. These two methods are used to convert between the initial datatype, and a primitive, serializable datatype. Primitive datatypes will typically be any of a number, string, boolean, \ndate\n/\ntime\n/\ndatetime\n or \nNone\n. They may also be any list or dictionary like object that only contains other primitive objects. Other types might be supported, depending on the renderer that you are using.\n\n\nThe \n.to_representation()\n method is called to convert the initial datatype into a primitive, serializable datatype.\n\n\nThe \nto_internal_value()\n method is called to restore a primitive datatype into its internal python representation. This method should raise a \nserializers.ValidationError\n if the data is invalid.\n\n\nNote that the \nWritableField\n class that was present in version 2.x no longer exists. You should subclass \nField\n and override \nto_internal_value()\n if the field supports data input.\n\n\nExamples\n\n\nLet's look at an example of serializing a class that represents an RGB color value:\n\n\nclass Color(object):\n \"\"\"\n A color represented in the RGB colorspace.\n \"\"\"\n def __init__(self, red, green, blue):\n assert(red \n= 0 and green \n= 0 and blue \n= 0)\n assert(red \n 256 and green \n 256 and blue \n 256)\n self.red, self.green, self.blue = red, green, blue\n\nclass ColorField(serializers.Field):\n \"\"\"\n Color objects are serialized into 'rgb(#, #, #)' notation.\n \"\"\"\n def to_representation(self, obj):\n return \"rgb(%d, %d, %d)\" % (obj.red, obj.green, obj.blue)\n\n def to_internal_value(self, data):\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n return Color(red, green, blue)\n\n\n\nBy default field values are treated as mapping to an attribute on the object. If you need to customize how the field value is accessed and set you need to override \n.get_attribute()\n and/or \n.get_value()\n.\n\n\nAs an example, let's create a field that can be used represent the class name of the object being serialized:\n\n\nclass ClassNameField(serializers.Field):\n def get_attribute(self, obj):\n # We pass the object instance onto `to_representation`,\n # not just the field attribute.\n return obj\n\n def to_representation(self, obj):\n \"\"\"\n Serialize the object's class name.\n \"\"\"\n return obj.__class__.__name__\n\n\n\nRaising validation errors\n\n\nOur \nColorField\n class above currently does not perform any data validation.\nTo indicate invalid data, we should raise a \nserializers.ValidationError\n, like so:\n\n\ndef to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n raise ValidationError(msg % type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n raise ValidationError('Incorrect format. Expected `rgb(#,#,#)`.')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col \n 255 or col \n 0 for col in (red, green, blue)]):\n raise ValidationError('Value out of range. Must be between 0 and 255.')\n\n return Color(red, green, blue)\n\n\n\nThe \n.fail()\n method is a shortcut for raising \nValidationError\n that takes a message string from the \nerror_messages\n dictionary. For example:\n\n\ndefault_error_messages = {\n 'incorrect_type': 'Incorrect type. Expected a string, but got {input_type}',\n 'incorrect_format': 'Incorrect format. Expected `rgb(#,#,#)`.',\n 'out_of_range': 'Value out of range. Must be between 0 and 255.'\n}\n\ndef to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n self.fail('incorrect_type', input_type=type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n self.fail('incorrect_format')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col \n 255 or col \n 0 for col in (red, green, blue)]):\n self.fail('out_of_range')\n\n return Color(red, green, blue)\n\n\n\nThis style keeps you error messages more cleanly separated from your code, and should be preferred.\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nDRF Compound Fields\n\n\nThe \ndrf-compound-fields\n package provides \"compound\" serializer fields, such as lists of simple values, which can be described by other fields rather than serializers with the \nmany=True\n option. Also provided are fields for typed dictionaries and values that can be either a specific type or a list of items of that type.\n\n\nDRF Extra Fields\n\n\nThe \ndrf-extra-fields\n package provides extra serializer fields for REST framework, including \nBase64ImageField\n and \nPointField\n classes.\n\n\ndjangrestframework-recursive\n\n\nthe \ndjangorestframework-recursive\n package provides a \nRecursiveField\n for serializing and deserializing recursive structures\n\n\ndjango-rest-framework-gis\n\n\nThe \ndjango-rest-framework-gis\n package provides geographic addons for django rest framework like a \nGeometryField\n field and a GeoJSON serializer.\n\n\ndjango-rest-framework-hstore\n\n\nThe \ndjango-rest-framework-hstore\n package provides an \nHStoreField\n to support \ndjango-hstore\n \nDictionaryField\n model field.",
+ "text": "Serializer fields\n\n\n\n\nEach field in a Form class is responsible not only for validating data, but also for \"cleaning\" it \n normalizing it to a consistent format.\n\n\n \nDjango documentation\n\n\n\n\nSerializer fields handle converting between primitive values and internal datatypes. They also deal with validating input values, as well as retrieving and setting the values from their parent objects.\n\n\n\n\nNote:\n The serializer fields are declared in \nfields.py\n, but by convention you should import them using \nfrom rest_framework import serializers\n and refer to fields as \nserializers.\nFieldName\n.\n\n\n\n\nCore arguments\n\n\nEach serializer field class constructor takes at least these arguments. Some Field classes take additional, field-specific arguments, but the following should always be accepted:\n\n\nread_only\n\n\nRead-only fields are included in the API output, but should not be included in the input during create or update operations. Any 'read_only' fields that are incorrectly included in the serializer input will be ignored.\n\n\nSet this to \nTrue\n to ensure that the field is used when serializing a representation, but is not used when creating or updating an instance during deserialization.\n\n\nDefaults to \nFalse\n\n\nwrite_only\n\n\nSet this to \nTrue\n to ensure that the field may be used when updating or creating an instance, but is not included when serializing the representation.\n\n\nDefaults to \nFalse\n\n\nrequired\n\n\nNormally an error will be raised if a field is not supplied during deserialization.\nSet to false if this field is not required to be present during deserialization.\n\n\nSetting this to \nFalse\n also allows the object attribute or dictionary key to be omitted from output when serializing the instance. If the key is not present it will simply not be included in the output representation.\n\n\nDefaults to \nTrue\n.\n\n\nallow_null\n\n\nNormally an error will be raised if \nNone\n is passed to a serializer field. Set this keyword argument to \nTrue\n if \nNone\n should be considered a valid value.\n\n\nDefaults to \nFalse\n\n\ndefault\n\n\nIf set, this gives the default value that will be used for the field if no input value is supplied. If not set the default behavior is to not populate the attribute at all.\n\n\nMay be set to a function or other callable, in which case the value will be evaluated each time it is used. When called, it will receive no arguments. If the callable has a \nset_context\n method, that will be called each time before getting the value with the field instance as only argument. This works the same way as for \nvalidators\n.\n\n\nNote that setting a \ndefault\n value implies that the field is not required. Including both the \ndefault\n and \nrequired\n keyword arguments is invalid and will raise an error.\n\n\nsource\n\n\nThe name of the attribute that will be used to populate the field. May be a method that only takes a \nself\n argument, such as \nURLField(source='get_absolute_url')\n, or may use dotted notation to traverse attributes, such as \nEmailField(source='user.email')\n.\n\n\nThe value \nsource='*'\n has a special meaning, and is used to indicate that the entire object should be passed through to the field. This can be useful for creating nested representations, or for fields which require access to the complete object in order to determine the output representation.\n\n\nDefaults to the name of the field.\n\n\nvalidators\n\n\nA list of validator functions which should be applied to the incoming field input, and which either raise a validation error or simply return. Validator functions should typically raise \nserializers.ValidationError\n, but Django's built-in \nValidationError\n is also supported for compatibility with validators defined in the Django codebase or third party Django packages.\n\n\nerror_messages\n\n\nA dictionary of error codes to error messages.\n\n\nlabel\n\n\nA short text string that may be used as the name of the field in HTML form fields or other descriptive elements.\n\n\nhelp_text\n\n\nA text string that may be used as a description of the field in HTML form fields or other descriptive elements.\n\n\ninitial\n\n\nA value that should be used for pre-populating the value of HTML form fields.\n\n\nstyle\n\n\nA dictionary of key-value pairs that can be used to control how renderers should render the field.\n\n\nTwo examples here are \n'input_type'\n and \n'base_template'\n:\n\n\n# Use \ninput type=\"password\"\n for the input.\npassword = serializers.CharField(\n style={'input_type': 'password'}\n)\n\n# Use a radio input instead of a select input.\ncolor_channel = serializers.ChoiceField(\n choices=['red', 'green', 'blue']\n style = {'base_template': 'radio.html'}\n}\n\n\n\nFor more details see the \nHTML \n Forms\n documentation.\n\n\n\n\nBoolean fields\n\n\nBooleanField\n\n\nA boolean representation.\n\n\nWhen using HTML encoded form input be aware that omitting a value will always be treated as setting a field to \nFalse\n, even if it has a \ndefault=True\n option specified. This is because HTML checkbox inputs represent the unchecked state by omitting the value, so REST framework treats omission as if it is an empty checkbox input.\n\n\nCorresponds to \ndjango.db.models.fields.BooleanField\n.\n\n\nSignature:\n \nBooleanField()\n\n\nNullBooleanField\n\n\nA boolean representation that also accepts \nNone\n as a valid value.\n\n\nCorresponds to \ndjango.db.models.fields.NullBooleanField\n.\n\n\nSignature:\n \nNullBooleanField()\n\n\n\n\nString fields\n\n\nCharField\n\n\nA text representation. Optionally validates the text to be shorter than \nmax_length\n and longer than \nmin_length\n.\n\n\nCorresponds to \ndjango.db.models.fields.CharField\n or \ndjango.db.models.fields.TextField\n.\n\n\nSignature:\n \nCharField(max_length=None, min_length=None, allow_blank=False, trim_whitespace=True)\n\n\n\n\nmax_length\n - Validates that the input contains no more than this number of characters.\n\n\nmin_length\n - Validates that the input contains no fewer than this number of characters.\n\n\nallow_blank\n - If set to \nTrue\n then the empty string should be considered a valid value. If set to \nFalse\n then the empty string is considered invalid and will raise a validation error. Defaults to \nFalse\n.\n\n\ntrim_whitespace\n - If set to \nTrue\n then leading and trailing whitespace is trimmed. Defaults to \nTrue\n.\n\n\n\n\nThe \nallow_null\n option is also available for string fields, although its usage is discouraged in favor of \nallow_blank\n. It is valid to set both \nallow_blank=True\n and \nallow_null=True\n, but doing so means that there will be two differing types of empty value permissible for string representations, which can lead to data inconsistencies and subtle application bugs.\n\n\nEmailField\n\n\nA text representation, validates the text to be a valid e-mail address.\n\n\nCorresponds to \ndjango.db.models.fields.EmailField\n\n\nSignature:\n \nEmailField(max_length=None, min_length=None, allow_blank=False)\n\n\nRegexField\n\n\nA text representation, that validates the given value matches against a certain regular expression.\n\n\nCorresponds to \ndjango.forms.fields.RegexField\n.\n\n\nSignature:\n \nRegexField(regex, max_length=None, min_length=None, allow_blank=False)\n\n\nThe mandatory \nregex\n argument may either be a string, or a compiled python regular expression object.\n\n\nUses Django's \ndjango.core.validators.RegexValidator\n for validation.\n\n\nSlugField\n\n\nA \nRegexField\n that validates the input against the pattern \n[a-zA-Z0-9_-]+\n.\n\n\nCorresponds to \ndjango.db.models.fields.SlugField\n.\n\n\nSignature:\n \nSlugField(max_length=50, min_length=None, allow_blank=False)\n\n\nURLField\n\n\nA \nRegexField\n that validates the input against a URL matching pattern. Expects fully qualified URLs of the form \nhttp://\nhost\n/\npath\n.\n\n\nCorresponds to \ndjango.db.models.fields.URLField\n. Uses Django's \ndjango.core.validators.URLValidator\n for validation.\n\n\nSignature:\n \nURLField(max_length=200, min_length=None, allow_blank=False)\n\n\nUUIDField\n\n\nA field that ensures the input is a valid UUID string. The \nto_internal_value\n method will return a \nuuid.UUID\n instance. On output the field will return a string in the canonical hyphenated format, for example:\n\n\n\"de305d54-75b4-431b-adb2-eb6b9e546013\"\n\n\n\nSignature:\n \nUUIDField(format='hex_verbose')\n\n\n\n\nformat\n: Determines the representation format of the uuid value\n\n\n'hex_verbose'\n - The cannoncical hex representation, including hyphens: \n\"5ce0e9a5-5ffa-654b-cee0-1238041fb31a\"\n\n\n'hex'\n - The compact hex representation of the UUID, not including hyphens: \n\"5ce0e9a55ffa654bcee01238041fb31a\"\n\n\n'int'\n - A 128 bit integer representation of the UUID: \n\"123456789012312313134124512351145145114\"\n\n\n'urn'\n - RFC 4122 URN representation of the UUID: \n\"urn:uuid:5ce0e9a5-5ffa-654b-cee0-1238041fb31a\"\n\n Changing the \nformat\n parameters only affects representation values. All formats are accepted by \nto_internal_value\n\n\n\n\n\n\n\n\nFilePathField\n\n\nA field whose choices are limited to the filenames in a certain directory on the filesystem\n\n\nCorresponds to \ndjango.forms.fields.FilePathField\n.\n\n\nSignature:\n \nFilePathField(path, match=None, recursive=False, allow_files=True, allow_folders=False, required=None, **kwargs)\n\n\n\n\npath\n - The absolute filesystem path to a directory from which this FilePathField should get its choice.\n\n\nmatch\n - A regular expression, as a string, that FilePathField will use to filter filenames.\n\n\nrecursive\n - Specifies whether all subdirectories of path should be included. Default is \nFalse\n.\n\n\nallow_files\n - Specifies whether files in the specified location should be included. Default is \nTrue\n. Either this or \nallow_folders\n must be \nTrue\n.\n\n\nallow_folders\n - Specifies whether folders in the specified location should be included. Default is \nFalse\n. Either this or \nallow_files\n must be \nTrue\n.\n\n\n\n\nIPAddressField\n\n\nA field that ensures the input is a valid IPv4 or IPv6 string.\n\n\nCorresponds to \ndjango.forms.fields.IPAddressField\n and \ndjango.forms.fields.GenericIPAddressField\n.\n\n\nSignature\n: \nIPAddressField(protocol='both', unpack_ipv4=False, **options)\n\n\n\n\nprotocol\n Limits valid inputs to the specified protocol. Accepted values are 'both' (default), 'IPv4' or 'IPv6'. Matching is case insensitive.\n\n\nunpack_ipv4\n Unpacks IPv4 mapped addresses like ::ffff:192.0.2.1. If this option is enabled that address would be unpacked to 192.0.2.1. Default is disabled. Can only be used when protocol is set to 'both'.\n\n\n\n\n\n\nNumeric fields\n\n\nIntegerField\n\n\nAn integer representation.\n\n\nCorresponds to \ndjango.db.models.fields.IntegerField\n, \ndjango.db.models.fields.SmallIntegerField\n, \ndjango.db.models.fields.PositiveIntegerField\n and \ndjango.db.models.fields.PositiveSmallIntegerField\n.\n\n\nSignature\n: \nIntegerField(max_value=None, min_value=None)\n\n\n\n\nmax_value\n Validate that the number provided is no greater than this value.\n\n\nmin_value\n Validate that the number provided is no less than this value.\n\n\n\n\nFloatField\n\n\nA floating point representation.\n\n\nCorresponds to \ndjango.db.models.fields.FloatField\n.\n\n\nSignature\n: \nFloatField(max_value=None, min_value=None)\n\n\n\n\nmax_value\n Validate that the number provided is no greater than this value.\n\n\nmin_value\n Validate that the number provided is no less than this value.\n\n\n\n\nDecimalField\n\n\nA decimal representation, represented in Python by a \nDecimal\n instance.\n\n\nCorresponds to \ndjango.db.models.fields.DecimalField\n.\n\n\nSignature\n: \nDecimalField(max_digits, decimal_places, coerce_to_string=None, max_value=None, min_value=None)\n\n\n\n\nmax_digits\n The maximum number of digits allowed in the number. Note that this number must be greater than or equal to decimal_places.\n\n\ndecimal_places\n The number of decimal places to store with the number.\n\n\ncoerce_to_string\n Set to \nTrue\n if string values should be returned for the representation, or \nFalse\n if \nDecimal\n objects should be returned. Defaults to the same value as the \nCOERCE_DECIMAL_TO_STRING\n settings key, which will be \nTrue\n unless overridden. If \nDecimal\n objects are returned by the serializer, then the final output format will be determined by the renderer.\n\n\nmax_value\n Validate that the number provided is no greater than this value.\n\n\nmin_value\n Validate that the number provided is no less than this value.\n\n\n\n\nExample usage\n\n\nTo validate numbers up to 999 with a resolution of 2 decimal places, you would use:\n\n\nserializers.DecimalField(max_digits=5, decimal_places=2)\n\n\n\nAnd to validate numbers up to anything less than one billion with a resolution of 10 decimal places:\n\n\nserializers.DecimalField(max_digits=19, decimal_places=10)\n\n\n\nThis field also takes an optional argument, \ncoerce_to_string\n. If set to \nTrue\n the representation will be output as a string. If set to \nFalse\n the representation will be left as a \nDecimal\n instance and the final representation will be determined by the renderer.\n\n\nIf unset, this will default to the same value as the \nCOERCE_DECIMAL_TO_STRING\n setting, which is \nTrue\n unless set otherwise.\n\n\n\n\nDate and time fields\n\n\nDateTimeField\n\n\nA date and time representation.\n\n\nCorresponds to \ndjango.db.models.fields.DateTimeField\n.\n\n\nSignature:\n \nDateTimeField(format=None, input_formats=None)\n\n\n\n\nformat\n - A string representing the output format. If not specified, this defaults to the same value as the \nDATETIME_FORMAT\n settings key, which will be \n'iso-8601'\n unless set. Setting to a format string indicates that \nto_representation\n return values should be coerced to string output. Format strings are described below. Setting this value to \nNone\n indicates that Python \ndatetime\n objects should be returned by \nto_representation\n. In this case the datetime encoding will be determined by the renderer.\n\n\ninput_formats\n - A list of strings representing the input formats which may be used to parse the date. If not specified, the \nDATETIME_INPUT_FORMATS\n setting will be used, which defaults to \n['iso-8601']\n.\n\n\n\n\nDateTimeField\n format strings.\n\n\nFormat strings may either be \nPython strftime formats\n which explicitly specify the format, or the special string \n'iso-8601'\n, which indicates that \nISO 8601\n style datetimes should be used. (eg \n'2013-01-29T12:34:56.000000Z'\n)\n\n\nWhen a value of \nNone\n is used for the format \ndatetime\n objects will be returned by \nto_representation\n and the final output representation will determined by the renderer class.\n\n\nIn the case of JSON this means the default datetime representation uses the \nECMA 262 date time string specification\n. This is a subset of ISO 8601 which uses millisecond precision, and includes the 'Z' suffix for the UTC timezone, for example: \n2013-01-29T12:34:56.123Z\n.\n\n\nauto_now_add\n model fields.\nauto_now\n and \n\n\nWhen using \nModelSerializer\n or \nHyperlinkedModelSerializer\n, note that any model fields with \nauto_now=True\n or \nauto_now_add=True\n will use serializer fields that are \nread_only=True\n by default.\n\n\nIf you want to override this behavior, you'll need to declare the \nDateTimeField\n explicitly on the serializer. For example:\n\n\nclass CommentSerializer(serializers.ModelSerializer):\n created = serializers.DateTimeField()\n\n class Meta:\n model = Comment\n\n\n\nDateField\n\n\nA date representation.\n\n\nCorresponds to \ndjango.db.models.fields.DateField\n\n\nSignature:\n \nDateField(format=None, input_formats=None)\n\n\n\n\nformat\n - A string representing the output format. If not specified, this defaults to the same value as the \nDATE_FORMAT\n settings key, which will be \n'iso-8601'\n unless set. Setting to a format string indicates that \nto_representation\n return values should be coerced to string output. Format strings are described below. Setting this value to \nNone\n indicates that Python \ndate\n objects should be returned by \nto_representation\n. In this case the date encoding will be determined by the renderer.\n\n\ninput_formats\n - A list of strings representing the input formats which may be used to parse the date. If not specified, the \nDATE_INPUT_FORMATS\n setting will be used, which defaults to \n['iso-8601']\n.\n\n\n\n\nDateField\n format strings\n\n\nFormat strings may either be \nPython strftime formats\n which explicitly specify the format, or the special string \n'iso-8601'\n, which indicates that \nISO 8601\n style dates should be used. (eg \n'2013-01-29'\n)\n\n\nTimeField\n\n\nA time representation.\n\n\nCorresponds to \ndjango.db.models.fields.TimeField\n\n\nSignature:\n \nTimeField(format=None, input_formats=None)\n\n\n\n\nformat\n - A string representing the output format. If not specified, this defaults to the same value as the \nTIME_FORMAT\n settings key, which will be \n'iso-8601'\n unless set. Setting to a format string indicates that \nto_representation\n return values should be coerced to string output. Format strings are described below. Setting this value to \nNone\n indicates that Python \ntime\n objects should be returned by \nto_representation\n. In this case the time encoding will be determined by the renderer.\n\n\ninput_formats\n - A list of strings representing the input formats which may be used to parse the date. If not specified, the \nTIME_INPUT_FORMATS\n setting will be used, which defaults to \n['iso-8601']\n.\n\n\n\n\nTimeField\n format strings\n\n\nFormat strings may either be \nPython strftime formats\n which explicitly specify the format, or the special string \n'iso-8601'\n, which indicates that \nISO 8601\n style times should be used. (eg \n'12:34:56.000000'\n)\n\n\nDurationField\n\n\nA Duration representation.\nCorresponds to \ndjango.db.models.fields.DurationField\n\n\nThe \nvalidated_data\n for these fields will contain a \ndatetime.timedelta\n instance.\nThe representation is a string following this format \n'[DD] [HH:[MM:]]ss[.uuuuuu]'\n.\n\n\nNote:\n This field is only available with Django versions \n= 1.8.\n\n\nSignature:\n \nDurationField()\n\n\n\n\nChoice selection fields\n\n\nChoiceField\n\n\nA field that can accept a value out of a limited set of choices.\n\n\nUsed by \nModelSerializer\n to automatically generate fields if the corresponding model field includes a \nchoices=\u2026\n argument.\n\n\nSignature:\n \nChoiceField(choices)\n\n\n\n\nchoices\n - A list of valid values, or a list of \n(key, display_name)\n tuples.\n\n\nallow_blank\n - If set to \nTrue\n then the empty string should be considered a valid value. If set to \nFalse\n then the empty string is considered invalid and will raise a validation error. Defaults to \nFalse\n.\n\n\nhtml_cutoff\n - If set this will be the maximum number of choices that will be displayed by a HTML select drop down. Can be used to ensure that automatically generated ChoiceFields with very large possible selections do not prevent a template from rendering. Defaults to \nNone\n.\n\n\nhtml_cutoff_text\n - If set this will display a textual indicator if the maximum number of items have been cutoff in an HTML select drop down. Defaults to \n\"More than {count} items\u2026\"\n\n\n\n\nBoth the \nallow_blank\n and \nallow_null\n are valid options on \nChoiceField\n, although it is highly recommended that you only use one and not both. \nallow_blank\n should be preferred for textual choices, and \nallow_null\n should be preferred for numeric or other non-textual choices.\n\n\nMultipleChoiceField\n\n\nA field that can accept a set of zero, one or many values, chosen from a limited set of choices. Takes a single mandatory argument. \nto_internal_value\n returns a \nset\n containing the selected values.\n\n\nSignature:\n \nMultipleChoiceField(choices)\n\n\n\n\nchoices\n - A list of valid values, or a list of \n(key, display_name)\n tuples.\n\n\nallow_blank\n - If set to \nTrue\n then the empty string should be considered a valid value. If set to \nFalse\n then the empty string is considered invalid and will raise a validation error. Defaults to \nFalse\n.\n\n\nhtml_cutoff\n - If set this will be the maximum number of choices that will be displayed by a HTML select drop down. Can be used to ensure that automatically generated ChoiceFields with very large possible selections do not prevent a template from rendering. Defaults to \nNone\n.\n\n\nhtml_cutoff_text\n - If set this will display a textual indicator if the maximum number of items have been cutoff in an HTML select drop down. Defaults to \n\"More than {count} items\u2026\"\n\n\n\n\nAs with \nChoiceField\n, both the \nallow_blank\n and \nallow_null\n options are valid, although it is highly recommended that you only use one and not both. \nallow_blank\n should be preferred for textual choices, and \nallow_null\n should be preferred for numeric or other non-textual choices.\n\n\n\n\nFile upload fields\n\n\nParsers and file uploads.\n\n\nThe \nFileField\n and \nImageField\n classes are only suitable for use with \nMultiPartParser\n or \nFileUploadParser\n. Most parsers, such as e.g. JSON don't support file uploads.\nDjango's regular \nFILE_UPLOAD_HANDLERS\n are used for handling uploaded files.\n\n\nFileField\n\n\nA file representation. Performs Django's standard FileField validation.\n\n\nCorresponds to \ndjango.forms.fields.FileField\n.\n\n\nSignature:\n \nFileField(max_length=None, allow_empty_file=False, use_url=UPLOADED_FILES_USE_URL)\n\n\n\n\nmax_length\n - Designates the maximum length for the file name.\n\n\nallow_empty_file\n - Designates if empty files are allowed.\n\n\nuse_url\n - If set to \nTrue\n then URL string values will be used for the output representation. If set to \nFalse\n then filename string values will be used for the output representation. Defaults to the value of the \nUPLOADED_FILES_USE_URL\n settings key, which is \nTrue\n unless set otherwise.\n\n\n\n\nImageField\n\n\nAn image representation. Validates the uploaded file content as matching a known image format.\n\n\nCorresponds to \ndjango.forms.fields.ImageField\n.\n\n\nSignature:\n \nImageField(max_length=None, allow_empty_file=False, use_url=UPLOADED_FILES_USE_URL)\n\n\n\n\nmax_length\n - Designates the maximum length for the file name.\n\n\nallow_empty_file\n - Designates if empty files are allowed.\n\n\nuse_url\n - If set to \nTrue\n then URL string values will be used for the output representation. If set to \nFalse\n then filename string values will be used for the output representation. Defaults to the value of the \nUPLOADED_FILES_USE_URL\n settings key, which is \nTrue\n unless set otherwise.\n\n\n\n\nRequires either the \nPillow\n package or \nPIL\n package. The \nPillow\n package is recommended, as \nPIL\n is no longer actively maintained.\n\n\n\n\nComposite fields\n\n\nListField\n\n\nA field class that validates a list of objects.\n\n\nSignature\n: \nListField(child)\n\n\n\n\nchild\n - A field instance that should be used for validating the objects in the list. If this argument is not provided then objects in the list will not be validated.\n\n\n\n\nFor example, to validate a list of integers you might use something like the following:\n\n\nscores = serializers.ListField(\n child=serializers.IntegerField(min_value=0, max_value=100)\n)\n\n\n\nThe \nListField\n class also supports a declarative style that allows you to write reusable list field classes.\n\n\nclass StringListField(serializers.ListField):\n child = serializers.CharField()\n\n\n\nWe can now reuse our custom \nStringListField\n class throughout our application, without having to provide a \nchild\n argument to it.\n\n\nDictField\n\n\nA field class that validates a dictionary of objects. The keys in \nDictField\n are always assumed to be string values.\n\n\nSignature\n: \nDictField(child)\n\n\n\n\nchild\n - A field instance that should be used for validating the values in the dictionary. If this argument is not provided then values in the mapping will not be validated.\n\n\n\n\nFor example, to create a field that validates a mapping of strings to strings, you would write something like this:\n\n\ndocument = DictField(child=CharField())\n\n\n\nYou can also use the declarative style, as with \nListField\n. For example:\n\n\nclass DocumentField(DictField):\n child = CharField()\n\n\n\nJSONField\n\n\nA field class that validates that the incoming data structure consists of valid JSON primitives. In its alternate binary mode, it will represent and validate JSON-encoded binary strings.\n\n\nSignature\n: \nJSONField(binary)\n\n\n\n\nbinary\n - If set to \nTrue\n then the field will output and validate a JSON encoded string, rather than a primitive data structure. Defaults to \nFalse\n.\n\n\n\n\n\n\nMiscellaneous fields\n\n\nReadOnlyField\n\n\nA field class that simply returns the value of the field without modification.\n\n\nThis field is used by default with \nModelSerializer\n when including field names that relate to an attribute rather than a model field.\n\n\nSignature\n: \nReadOnlyField()\n\n\nFor example, is \nhas_expired\n was a property on the \nAccount\n model, then the following serializer would automatically generate it as a \nReadOnlyField\n:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n class Meta:\n model = Account\n fields = ('id', 'account_name', 'has_expired')\n\n\n\nHiddenField\n\n\nA field class that does not take a value based on user input, but instead takes its value from a default value or callable.\n\n\nSignature\n: \nHiddenField()\n\n\nFor example, to include a field that always provides the current time as part of the serializer validated data, you would use the following:\n\n\nmodified = serializers.HiddenField(default=timezone.now)\n\n\n\nThe \nHiddenField\n class is usually only needed if you have some validation that needs to run based on some pre-provided field values, but you do not want to expose all of those fields to the end user.\n\n\nFor further examples on \nHiddenField\n see the \nvalidators\n documentation.\n\n\nModelField\n\n\nA generic field that can be tied to any arbitrary model field. The \nModelField\n class delegates the task of serialization/deserialization to its associated model field. This field can be used to create serializer fields for custom model fields, without having to create a new custom serializer field.\n\n\nThis field is used by \nModelSerializer\n to correspond to custom model field classes.\n\n\nSignature:\n \nModelField(model_field=\nDjango ModelField instance\n)\n\n\nThe \nModelField\n class is generally intended for internal use, but can be used by your API if needed. In order to properly instantiate a \nModelField\n, it must be passed a field that is attached to an instantiated model. For example: \nModelField(model_field=MyModel()._meta.get_field('custom_field'))\n\n\nSerializerMethodField\n\n\nThis is a read-only field. It gets its value by calling a method on the serializer class it is attached to. It can be used to add any sort of data to the serialized representation of your object.\n\n\nSignature\n: \nSerializerMethodField(method_name=None)\n\n\n\n\nmethod_name\n - The name of the method on the serializer to be called. If not included this defaults to \nget_\nfield_name\n.\n\n\n\n\nThe serializer method referred to by the \nmethod_name\n argument should accept a single argument (in addition to \nself\n), which is the object being serialized. It should return whatever you want to be included in the serialized representation of the object. For example:\n\n\nfrom django.contrib.auth.models import User\nfrom django.utils.timezone import now\nfrom rest_framework import serializers\n\nclass UserSerializer(serializers.ModelSerializer):\n days_since_joined = serializers.SerializerMethodField()\n\n class Meta:\n model = User\n\n def get_days_since_joined(self, obj):\n return (now() - obj.date_joined).days\n\n\n\n\n\nCustom fields\n\n\nIf you want to create a custom field, you'll need to subclass \nField\n and then override either one or both of the \n.to_representation()\n and \n.to_internal_value()\n methods. These two methods are used to convert between the initial datatype, and a primitive, serializable datatype. Primitive datatypes will typically be any of a number, string, boolean, \ndate\n/\ntime\n/\ndatetime\n or \nNone\n. They may also be any list or dictionary like object that only contains other primitive objects. Other types might be supported, depending on the renderer that you are using.\n\n\nThe \n.to_representation()\n method is called to convert the initial datatype into a primitive, serializable datatype.\n\n\nThe \nto_internal_value()\n method is called to restore a primitive datatype into its internal python representation. This method should raise a \nserializers.ValidationError\n if the data is invalid.\n\n\nNote that the \nWritableField\n class that was present in version 2.x no longer exists. You should subclass \nField\n and override \nto_internal_value()\n if the field supports data input.\n\n\nExamples\n\n\nLet's look at an example of serializing a class that represents an RGB color value:\n\n\nclass Color(object):\n \"\"\"\n A color represented in the RGB colorspace.\n \"\"\"\n def __init__(self, red, green, blue):\n assert(red \n= 0 and green \n= 0 and blue \n= 0)\n assert(red \n 256 and green \n 256 and blue \n 256)\n self.red, self.green, self.blue = red, green, blue\n\nclass ColorField(serializers.Field):\n \"\"\"\n Color objects are serialized into 'rgb(#, #, #)' notation.\n \"\"\"\n def to_representation(self, obj):\n return \"rgb(%d, %d, %d)\" % (obj.red, obj.green, obj.blue)\n\n def to_internal_value(self, data):\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n return Color(red, green, blue)\n\n\n\nBy default field values are treated as mapping to an attribute on the object. If you need to customize how the field value is accessed and set you need to override \n.get_attribute()\n and/or \n.get_value()\n.\n\n\nAs an example, let's create a field that can be used to represent the class name of the object being serialized:\n\n\nclass ClassNameField(serializers.Field):\n def get_attribute(self, obj):\n # We pass the object instance onto `to_representation`,\n # not just the field attribute.\n return obj\n\n def to_representation(self, obj):\n \"\"\"\n Serialize the object's class name.\n \"\"\"\n return obj.__class__.__name__\n\n\n\nRaising validation errors\n\n\nOur \nColorField\n class above currently does not perform any data validation.\nTo indicate invalid data, we should raise a \nserializers.ValidationError\n, like so:\n\n\ndef to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n raise ValidationError(msg % type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n raise ValidationError('Incorrect format. Expected `rgb(#,#,#)`.')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col \n 255 or col \n 0 for col in (red, green, blue)]):\n raise ValidationError('Value out of range. Must be between 0 and 255.')\n\n return Color(red, green, blue)\n\n\n\nThe \n.fail()\n method is a shortcut for raising \nValidationError\n that takes a message string from the \nerror_messages\n dictionary. For example:\n\n\ndefault_error_messages = {\n 'incorrect_type': 'Incorrect type. Expected a string, but got {input_type}',\n 'incorrect_format': 'Incorrect format. Expected `rgb(#,#,#)`.',\n 'out_of_range': 'Value out of range. Must be between 0 and 255.'\n}\n\ndef to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n self.fail('incorrect_type', input_type=type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n self.fail('incorrect_format')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col \n 255 or col \n 0 for col in (red, green, blue)]):\n self.fail('out_of_range')\n\n return Color(red, green, blue)\n\n\n\nThis style keeps you error messages more cleanly separated from your code, and should be preferred.\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nDRF Compound Fields\n\n\nThe \ndrf-compound-fields\n package provides \"compound\" serializer fields, such as lists of simple values, which can be described by other fields rather than serializers with the \nmany=True\n option. Also provided are fields for typed dictionaries and values that can be either a specific type or a list of items of that type.\n\n\nDRF Extra Fields\n\n\nThe \ndrf-extra-fields\n package provides extra serializer fields for REST framework, including \nBase64ImageField\n and \nPointField\n classes.\n\n\ndjangrestframework-recursive\n\n\nthe \ndjangorestframework-recursive\n package provides a \nRecursiveField\n for serializing and deserializing recursive structures\n\n\ndjango-rest-framework-gis\n\n\nThe \ndjango-rest-framework-gis\n package provides geographic addons for django rest framework like a \nGeometryField\n field and a GeoJSON serializer.\n\n\ndjango-rest-framework-hstore\n\n\nThe \ndjango-rest-framework-hstore\n package provides an \nHStoreField\n to support \ndjango-hstore\n \nDictionaryField\n model field.",
"title": "Serializer fields"
},
{
@@ -1357,7 +1357,7 @@
},
{
"location": "/api-guide/fields/#datetimefield",
- "text": "A date and time representation. Corresponds to django.db.models.fields.DateTimeField . Signature: DateTimeField(format=None, input_formats=None) format - A string representing the output format. If not specified, this defaults to the same value as the DATETIME_FORMAT settings key, which will be 'iso-8601' unless set. Setting to a format string indicates that to_representation return values should be coerced to string output. Format strings are described below. Setting this value to None indicates that Python datetime objects should be returned by to_representation . In this case the datetime encoding will be determined by the renderer. input_formats - A list of strings representing the input formats which may be used to parse the date. If not specified, the DATETIME_INPUT_FORMATS setting will be used, which defaults to ['iso-8601'] . DateTimeField format strings. Format strings may either be Python strftime formats which explicitly specify the format, or the special string 'iso-8601' , which indicates that ISO 8601 style datetimes should be used. (eg '2013-01-29T12:34:56.000000Z' ) When a value of None is used for the format datetime objects will be returned by to_representation and the final output representation will determined by the renderer class. In the case of JSON this means the default datetime representation uses the ECMA 262 date time string specification . This is a subset of ISO 8601 which uses millisecond precision, and includes the 'Z' suffix for the UTC timezone, for example: 2013-01-29T12:34:56.123Z . auto_now and auto_now_add model fields. When using ModelSerializer or HyperlinkedModelSerializer , note that any model fields with auto_now=True or auto_now_add=True will use serializer fields that are read_only=True by default. If you want to override this behavior, you'll need to declare the DateTimeField explicitly on the serializer. For example: class CommentSerializer(serializers.ModelSerializer):\n created = serializers.DateTimeField()\n\n class Meta:\n model = Comment",
+ "text": "A date and time representation. Corresponds to django.db.models.fields.DateTimeField . Signature: DateTimeField(format=None, input_formats=None) format - A string representing the output format. If not specified, this defaults to the same value as the DATETIME_FORMAT settings key, which will be 'iso-8601' unless set. Setting to a format string indicates that to_representation return values should be coerced to string output. Format strings are described below. Setting this value to None indicates that Python datetime objects should be returned by to_representation . In this case the datetime encoding will be determined by the renderer. input_formats - A list of strings representing the input formats which may be used to parse the date. If not specified, the DATETIME_INPUT_FORMATS setting will be used, which defaults to ['iso-8601'] . DateTimeField format strings. Format strings may either be Python strftime formats which explicitly specify the format, or the special string 'iso-8601' , which indicates that ISO 8601 style datetimes should be used. (eg '2013-01-29T12:34:56.000000Z' ) When a value of None is used for the format datetime objects will be returned by to_representation and the final output representation will determined by the renderer class. In the case of JSON this means the default datetime representation uses the ECMA 262 date time string specification . This is a subset of ISO 8601 which uses millisecond precision, and includes the 'Z' suffix for the UTC timezone, for example: 2013-01-29T12:34:56.123Z . auto_now_add model fields. auto_now and When using ModelSerializer or HyperlinkedModelSerializer , note that any model fields with auto_now=True or auto_now_add=True will use serializer fields that are read_only=True by default. If you want to override this behavior, you'll need to declare the DateTimeField explicitly on the serializer. For example: class CommentSerializer(serializers.ModelSerializer):\n created = serializers.DateTimeField()\n\n class Meta:\n model = Comment",
"title": "DateTimeField"
},
{
@@ -1457,7 +1457,7 @@
},
{
"location": "/api-guide/fields/#examples",
- "text": "Let's look at an example of serializing a class that represents an RGB color value: class Color(object):\n \"\"\"\n A color represented in the RGB colorspace.\n \"\"\"\n def __init__(self, red, green, blue):\n assert(red = 0 and green = 0 and blue = 0)\n assert(red 256 and green 256 and blue 256)\n self.red, self.green, self.blue = red, green, blue\n\nclass ColorField(serializers.Field):\n \"\"\"\n Color objects are serialized into 'rgb(#, #, #)' notation.\n \"\"\"\n def to_representation(self, obj):\n return \"rgb(%d, %d, %d)\" % (obj.red, obj.green, obj.blue)\n\n def to_internal_value(self, data):\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n return Color(red, green, blue) By default field values are treated as mapping to an attribute on the object. If you need to customize how the field value is accessed and set you need to override .get_attribute() and/or .get_value() . As an example, let's create a field that can be used represent the class name of the object being serialized: class ClassNameField(serializers.Field):\n def get_attribute(self, obj):\n # We pass the object instance onto `to_representation`,\n # not just the field attribute.\n return obj\n\n def to_representation(self, obj):\n \"\"\"\n Serialize the object's class name.\n \"\"\"\n return obj.__class__.__name__ Raising validation errors Our ColorField class above currently does not perform any data validation.\nTo indicate invalid data, we should raise a serializers.ValidationError , like so: def to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n raise ValidationError(msg % type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n raise ValidationError('Incorrect format. Expected `rgb(#,#,#)`.')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col 255 or col 0 for col in (red, green, blue)]):\n raise ValidationError('Value out of range. Must be between 0 and 255.')\n\n return Color(red, green, blue) The .fail() method is a shortcut for raising ValidationError that takes a message string from the error_messages dictionary. For example: default_error_messages = {\n 'incorrect_type': 'Incorrect type. Expected a string, but got {input_type}',\n 'incorrect_format': 'Incorrect format. Expected `rgb(#,#,#)`.',\n 'out_of_range': 'Value out of range. Must be between 0 and 255.'\n}\n\ndef to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n self.fail('incorrect_type', input_type=type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n self.fail('incorrect_format')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col 255 or col 0 for col in (red, green, blue)]):\n self.fail('out_of_range')\n\n return Color(red, green, blue) This style keeps you error messages more cleanly separated from your code, and should be preferred.",
+ "text": "Let's look at an example of serializing a class that represents an RGB color value: class Color(object):\n \"\"\"\n A color represented in the RGB colorspace.\n \"\"\"\n def __init__(self, red, green, blue):\n assert(red = 0 and green = 0 and blue = 0)\n assert(red 256 and green 256 and blue 256)\n self.red, self.green, self.blue = red, green, blue\n\nclass ColorField(serializers.Field):\n \"\"\"\n Color objects are serialized into 'rgb(#, #, #)' notation.\n \"\"\"\n def to_representation(self, obj):\n return \"rgb(%d, %d, %d)\" % (obj.red, obj.green, obj.blue)\n\n def to_internal_value(self, data):\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n return Color(red, green, blue) By default field values are treated as mapping to an attribute on the object. If you need to customize how the field value is accessed and set you need to override .get_attribute() and/or .get_value() . As an example, let's create a field that can be used to represent the class name of the object being serialized: class ClassNameField(serializers.Field):\n def get_attribute(self, obj):\n # We pass the object instance onto `to_representation`,\n # not just the field attribute.\n return obj\n\n def to_representation(self, obj):\n \"\"\"\n Serialize the object's class name.\n \"\"\"\n return obj.__class__.__name__ Raising validation errors Our ColorField class above currently does not perform any data validation.\nTo indicate invalid data, we should raise a serializers.ValidationError , like so: def to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n raise ValidationError(msg % type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n raise ValidationError('Incorrect format. Expected `rgb(#,#,#)`.')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col 255 or col 0 for col in (red, green, blue)]):\n raise ValidationError('Value out of range. Must be between 0 and 255.')\n\n return Color(red, green, blue) The .fail() method is a shortcut for raising ValidationError that takes a message string from the error_messages dictionary. For example: default_error_messages = {\n 'incorrect_type': 'Incorrect type. Expected a string, but got {input_type}',\n 'incorrect_format': 'Incorrect format. Expected `rgb(#,#,#)`.',\n 'out_of_range': 'Value out of range. Must be between 0 and 255.'\n}\n\ndef to_internal_value(self, data):\n if not isinstance(data, six.text_type):\n msg = 'Incorrect type. Expected a string, but got %s'\n self.fail('incorrect_type', input_type=type(data).__name__)\n\n if not re.match(r'^rgb\\([0-9]+,[0-9]+,[0-9]+\\)$', data):\n self.fail('incorrect_format')\n\n data = data.strip('rgb(').rstrip(')')\n red, green, blue = [int(col) for col in data.split(',')]\n\n if any([col 255 or col 0 for col in (red, green, blue)]):\n self.fail('out_of_range')\n\n return Color(red, green, blue) This style keeps you error messages more cleanly separated from your code, and should be preferred.",
"title": "Examples"
},
{
@@ -1947,7 +1947,7 @@
},
{
"location": "/api-guide/filtering/",
- "text": "Filtering\n\n\n\n\nThe root QuerySet provided by the Manager describes all objects in the database table. Usually, though, you'll need to select only a subset of the complete set of objects.\n\n\n \nDjango documentation\n\n\n\n\nThe default behavior of REST framework's generic list views is to return the entire queryset for a model manager. Often you will want your API to restrict the items that are returned by the queryset.\n\n\nThe simplest way to filter the queryset of any view that subclasses \nGenericAPIView\n is to override the \n.get_queryset()\n method.\n\n\nOverriding this method allows you to customize the queryset returned by the view in a number of different ways.\n\n\nFiltering against the current user\n\n\nYou might want to filter the queryset to ensure that only results relevant to the currently authenticated user making the request are returned.\n\n\nYou can do so by filtering based on the value of \nrequest.user\n.\n\n\nFor example:\n\n\nfrom myapp.models import Purchase\nfrom myapp.serializers import PurchaseSerializer\nfrom rest_framework import generics\n\nclass PurchaseList(generics.ListAPIView):\n serializer_class = PurchaseSerializer\n\n def get_queryset(self):\n \"\"\"\n This view should return a list of all the purchases\n for the currently authenticated user.\n \"\"\"\n user = self.request.user\n return Purchase.objects.filter(purchaser=user)\n\n\n\nFiltering against the URL\n\n\nAnother style of filtering might involve restricting the queryset based on some part of the URL.\n\n\nFor example if your URL config contained an entry like this:\n\n\nurl('^purchases/(?P\nusername\n.+)/$', PurchaseList.as_view()),\n\n\n\nYou could then write a view that returned a purchase queryset filtered by the username portion of the URL:\n\n\nclass PurchaseList(generics.ListAPIView):\n serializer_class = PurchaseSerializer\n\n def get_queryset(self):\n \"\"\"\n This view should return a list of all the purchases for\n the user as determined by the username portion of the URL.\n \"\"\"\n username = self.kwargs['username']\n return Purchase.objects.filter(purchaser__username=username)\n\n\n\nFiltering against query parameters\n\n\nA final example of filtering the initial queryset would be to determine the initial queryset based on query parameters in the url.\n\n\nWe can override \n.get_queryset()\n to deal with URLs such as \nhttp://example.com/api/purchases?username=denvercoder9\n, and filter the queryset only if the \nusername\n parameter is included in the URL:\n\n\nclass PurchaseList(generics.ListAPIView):\n serializer_class = PurchaseSerializer\n\n def get_queryset(self):\n \"\"\"\n Optionally restricts the returned purchases to a given user,\n by filtering against a `username` query parameter in the URL.\n \"\"\"\n queryset = Purchase.objects.all()\n username = self.request.query_params.get('username', None)\n if username is not None:\n queryset = queryset.filter(purchaser__username=username)\n return queryset\n\n\n\n\n\nGeneric Filtering\n\n\nAs well as being able to override the default queryset, REST framework also includes support for generic filtering backends that allow you to easily construct complex searches and filters.\n\n\nGeneric filters can also present themselves as HTML controls in the browsable API and admin API.\n\n\n\n\nSetting filter backends\n\n\nThe default filter backends may be set globally, using the \nDEFAULT_FILTER_BACKENDS\n setting. For example.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',)\n}\n\n\n\nYou can also set the filter backends on a per-view, or per-viewset basis,\nusing the \nGenericAPIView\n class based views.\n\n\nfrom django.contrib.auth.models import User\nfrom myapp.serializers import UserSerializer\nfrom rest_framework import filters\nfrom rest_framework import generics\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer = UserSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n\n\n\nFiltering and object lookups\n\n\nNote that if a filter backend is configured for a view, then as well as being used to filter list views, it will also be used to filter the querysets used for returning a single object.\n\n\nFor instance, given the previous example, and a product with an id of \n4675\n, the following URL would either return the corresponding object, or return a 404 response, depending on if the filtering conditions were met by the given product instance:\n\n\nhttp://example.com/api/products/4675/?category=clothing\nmax_price=10.00\n\n\n\nOverriding the initial queryset\n\n\nNote that you can use both an overridden \n.get_queryset()\n and generic filtering together, and everything will work as expected. For example, if \nProduct\n had a many-to-many relationship with \nUser\n, named \npurchase\n, you might want to write a view like this:\n\n\nclass PurchasedProductsList(generics.ListAPIView):\n \"\"\"\n Return a list of all the products that the authenticated\n user has ever purchased, with optional filtering.\n \"\"\"\n model = Product\n serializer_class = ProductSerializer\n filter_class = ProductFilter\n\n def get_queryset(self):\n user = self.request.user\n return user.purchase_set.all()\n\n\n\n\n\nAPI Guide\n\n\nDjangoFilterBackend\n\n\nThe \nDjangoFilterBackend\n class supports highly customizable field filtering, using the \ndjango-filter package\n.\n\n\nTo use REST framework's \nDjangoFilterBackend\n, first install \ndjango-filter\n.\n\n\npip install django-filter\n\n\n\nIf you are using the browsable API or admin API you may also want to install \ncrispy-forms\n, which will enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML.\n\n\npip install django-crispy-forms\n\n\n\nWith crispy forms installed, the browsable API will present a filtering control for \nDjangoFilterBackend\n, like so:\n\n\n\n\nSpecifying filter fields\n\n\nIf all you need is simple equality-based filtering, you can set a \nfilter_fields\n attribute on the view, or viewset, listing the set of fields you wish to filter against.\n\n\nclass ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_fields = ('category', 'in_stock')\n\n\n\nThis will automatically create a \nFilterSet\n class for the given fields, and will allow you to make requests such as:\n\n\nhttp://example.com/api/products?category=clothing\nin_stock=True\n\n\n\nSpecifying a FilterSet\n\n\nFor more advanced filtering requirements you can specify a \nFilterSet\n class that should be used by the view. For example:\n\n\nimport django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import filters\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n min_price = django_filters.NumberFilter(name=\"price\", lookup_type='gte')\n max_price = django_filters.NumberFilter(name=\"price\", lookup_type='lte')\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'min_price', 'max_price']\n\nclass ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_class = ProductFilter\n\n\n\nWhich will allow you to make requests such as:\n\n\nhttp://example.com/api/products?category=clothing\nmax_price=10.00\n\n\n\nYou can also span relationships using \ndjango-filter\n, let's assume that each\nproduct has foreign key to \nManufacturer\n model, so we create filter that\nfilters using \nManufacturer\n name. For example:\n\n\nimport django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer__name']\n\n\n\nThis enables us to make queries like:\n\n\nhttp://example.com/api/products?manufacturer__name=foo\n\n\n\nThis is nice, but it exposes the Django's double underscore convention as part of the API. If you instead want to explicitly name the filter argument you can instead explicitly include it on the \nFilterSet\n class:\n\n\nimport django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n manufacturer = django_filters.CharFilter(name=\"manufacturer__name\")\n\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer']\n\n\n\nAnd now you can execute:\n\n\nhttp://example.com/api/products?manufacturer=foo\n\n\n\nFor more details on using filter sets see the \ndjango-filter documentation\n.\n\n\n\n\nHints \n Tips\n\n\n\n\nBy default filtering is not enabled. If you want to use \nDjangoFilterBackend\n remember to make sure it is installed by using the \n'DEFAULT_FILTER_BACKENDS'\n setting.\n\n\nWhen using boolean fields, you should use the values \nTrue\n and \nFalse\n in the URL query parameters, rather than \n0\n, \n1\n, \ntrue\n or \nfalse\n. (The allowed boolean values are currently hardwired in Django's \nNullBooleanSelect implementation\n.)\n\n\ndjango-filter\n supports filtering across relationships, using Django's double-underscore syntax.\n\n\nFor Django 1.3 support, make sure to install \ndjango-filter\n version 0.5.4, as later versions drop support for 1.3.\n\n\n\n\n\n\nSearchFilter\n\n\nThe \nSearchFilter\n class supports simple single query parameter based searching, and is based on the \nDjango admin's search functionality\n.\n\n\nWhen in use, the browsable API will include a \nSearchFilter\n control:\n\n\n\n\nThe \nSearchFilter\n class will only be applied if the view has a \nsearch_fields\n attribute set. The \nsearch_fields\n attribute should be a list of names of text type fields on the model, such as \nCharField\n or \nTextField\n.\n\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer = UserSerializer\n filter_backends = (filters.SearchFilter,)\n search_fields = ('username', 'email')\n\n\n\nThis will allow the client to filter the items in the list by making queries such as:\n\n\nhttp://example.com/api/users?search=russell\n\n\n\nYou can also perform a related lookup on a ForeignKey or ManyToManyField with the lookup API double-underscore notation:\n\n\nsearch_fields = ('username', 'email', 'profile__profession')\n\n\n\nBy default, searches will use case-insensitive partial matches. The search parameter may contain multiple search terms, which should be whitespace and/or comma separated. If multiple search terms are used then objects will be returned in the list only if all the provided terms are matched.\n\n\nThe search behavior may be restricted by prepending various characters to the \nsearch_fields\n.\n\n\n\n\n'^' Starts-with search.\n\n\n'=' Exact matches.\n\n\n'@' Full-text search. (Currently only supported Django's MySQL backend.)\n\n\n'$' Regex search.\n\n\n\n\nFor example:\n\n\nsearch_fields = ('=username', '=email')\n\n\n\nBy default, the search parameter is named \n'search\n', but this may be overridden with the \nSEARCH_PARAM\n setting.\n\n\nFor more details, see the \nDjango documentation\n.\n\n\n\n\nOrderingFilter\n\n\nThe \nOrderingFilter\n class supports simple query parameter controlled ordering of results.\n\n\n\n\nBy default, the query parameter is named \n'ordering'\n, but this may by overridden with the \nORDERING_PARAM\n setting.\n\n\nFor example, to order users by username:\n\n\nhttp://example.com/api/users?ordering=username\n\n\n\nThe client may also specify reverse orderings by prefixing the field name with '-', like so:\n\n\nhttp://example.com/api/users?ordering=-username\n\n\n\nMultiple orderings may also be specified:\n\n\nhttp://example.com/api/users?ordering=account,username\n\n\n\nSpecifying which fields may be ordered against\n\n\nIt's recommended that you explicitly specify which fields the API should allowing in the ordering filter. You can do this by setting an \nordering_fields\n attribute on the view, like so:\n\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n filter_backends = (filters.OrderingFilter,)\n ordering_fields = ('username', 'email')\n\n\n\nThis helps prevent unexpected data leakage, such as allowing users to order against a password hash field or other sensitive data.\n\n\nIf you \ndon't\n specify an \nordering_fields\n attribute on the view, the filter class will default to allowing the user to filter on any readable fields on the serializer specified by the \nserializer_class\n attribute.\n\n\nIf you are confident that the queryset being used by the view doesn't contain any sensitive data, you can also explicitly specify that a view should allow ordering on \nany\n model field or queryset aggregate, by using the special value \n'__all__'\n.\n\n\nclass BookingsListView(generics.ListAPIView):\n queryset = Booking.objects.all()\n serializer_class = BookingSerializer\n filter_backends = (filters.OrderingFilter,)\n ordering_fields = '__all__'\n\n\n\nSpecifying a default ordering\n\n\nIf an \nordering\n attribute is set on the view, this will be used as the default ordering.\n\n\nTypically you'd instead control this by setting \norder_by\n on the initial queryset, but using the \nordering\n parameter on the view allows you to specify the ordering in a way that it can then be passed automatically as context to a rendered template. This makes it possible to automatically render column headers differently if they are being used to order the results.\n\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n filter_backends = (filters.OrderingFilter,)\n ordering_fields = ('username', 'email')\n ordering = ('username',)\n\n\n\nThe \nordering\n attribute may be either a string or a list/tuple of strings.\n\n\n\n\nDjangoObjectPermissionsFilter\n\n\nThe \nDjangoObjectPermissionsFilter\n is intended to be used together with the \ndjango-guardian\n package, with custom \n'view'\n permissions added. The filter will ensure that querysets only returns objects for which the user has the appropriate view permission.\n\n\nIf you're using \nDjangoObjectPermissionsFilter\n, you'll probably also want to add an appropriate object permissions class, to ensure that users can only operate on instances if they have the appropriate object permissions. The easiest way to do this is to subclass \nDjangoObjectPermissions\n and add \n'view'\n permissions to the \nperms_map\n attribute.\n\n\nA complete example using both \nDjangoObjectPermissionsFilter\n and \nDjangoObjectPermissions\n might look something like this.\n\n\npermissions.py\n:\n\n\nclass CustomObjectPermissions(permissions.DjangoObjectPermissions):\n \"\"\"\n Similar to `DjangoObjectPermissions`, but adding 'view' permissions.\n \"\"\"\n perms_map = {\n 'GET': ['%(app_label)s.view_%(model_name)s'],\n 'OPTIONS': ['%(app_label)s.view_%(model_name)s'],\n 'HEAD': ['%(app_label)s.view_%(model_name)s'],\n 'POST': ['%(app_label)s.add_%(model_name)s'],\n 'PUT': ['%(app_label)s.change_%(model_name)s'],\n 'PATCH': ['%(app_label)s.change_%(model_name)s'],\n 'DELETE': ['%(app_label)s.delete_%(model_name)s'],\n }\n\n\n\nviews.py\n:\n\n\nclass EventViewSet(viewsets.ModelViewSet):\n \"\"\"\n Viewset that only lists events if user has 'view' permissions, and only\n allows operations on individual events if user has appropriate 'view', 'add',\n 'change' or 'delete' permissions.\n \"\"\"\n queryset = Event.objects.all()\n serializer = EventSerializer\n filter_backends = (filters.DjangoObjectPermissionsFilter,)\n permission_classes = (myapp.permissions.CustomObjectPermissions,)\n\n\n\nFor more information on adding \n'view'\n permissions for models, see the \nrelevant section\n of the \ndjango-guardian\n documentation, and \nthis blogpost\n.\n\n\n\n\nCustom generic filtering\n\n\nYou can also provide your own generic filtering backend, or write an installable app for other developers to use.\n\n\nTo do so override \nBaseFilterBackend\n, and override the \n.filter_queryset(self, request, queryset, view)\n method. The method should return a new, filtered queryset.\n\n\nAs well as allowing clients to perform searches and filtering, generic filter backends can be useful for restricting which objects should be visible to any given request or user.\n\n\nExample\n\n\nFor example, you might need to restrict users to only being able to see objects they created.\n\n\nclass IsOwnerFilterBackend(filters.BaseFilterBackend):\n \"\"\"\n Filter that only allows users to see their own objects.\n \"\"\"\n def filter_queryset(self, request, queryset, view):\n return queryset.filter(owner=request.user)\n\n\n\nWe could achieve the same behavior by overriding \nget_queryset()\n on the views, but using a filter backend allows you to more easily add this restriction to multiple views, or to apply it across the entire API.\n\n\nCustomizing the interface\n\n\nGeneric filters may also present an interface in the browsable API. To do so you should implement a \nto_html()\n method which returns a rendered HTML representation of the filter. This method should have the following signature:\n\n\nto_html(self, request, queryset, view)\n\n\nThe method should return a rendered HTML string.\n\n\nThird party packages\n\n\nThe following third party packages provide additional filter implementations.\n\n\nDjango REST framework filters package\n\n\nThe \ndjango-rest-framework-filters package\n works together with the \nDjangoFilterBackend\n class, and allows you to easily create filters across relationships, or create multiple filter lookup types for a given field.\n\n\nDjango REST framework full word search filter\n\n\nThe \ndjangorestframework-word-filter\n developed as alternative to \nfilters.SearchFilter\n which will search full word in text, or exact match.\n\n\nDjango URL Filter\n\n\ndjango-url-filter\n provides a safe way to filter data via human-friendly URLs. It works very similar to DRF serializers and fields in a sense that they can be nested except they are called filtersets and filters. That provides easy way to filter related data. Also this library is generic-purpose so it can be used to filter other sources of data and not only Django \nQuerySet\ns.",
+ "text": "Filtering\n\n\n\n\nThe root QuerySet provided by the Manager describes all objects in the database table. Usually, though, you'll need to select only a subset of the complete set of objects.\n\n\n \nDjango documentation\n\n\n\n\nThe default behavior of REST framework's generic list views is to return the entire queryset for a model manager. Often you will want your API to restrict the items that are returned by the queryset.\n\n\nThe simplest way to filter the queryset of any view that subclasses \nGenericAPIView\n is to override the \n.get_queryset()\n method.\n\n\nOverriding this method allows you to customize the queryset returned by the view in a number of different ways.\n\n\nFiltering against the current user\n\n\nYou might want to filter the queryset to ensure that only results relevant to the currently authenticated user making the request are returned.\n\n\nYou can do so by filtering based on the value of \nrequest.user\n.\n\n\nFor example:\n\n\nfrom myapp.models import Purchase\nfrom myapp.serializers import PurchaseSerializer\nfrom rest_framework import generics\n\nclass PurchaseList(generics.ListAPIView):\n serializer_class = PurchaseSerializer\n\n def get_queryset(self):\n \"\"\"\n This view should return a list of all the purchases\n for the currently authenticated user.\n \"\"\"\n user = self.request.user\n return Purchase.objects.filter(purchaser=user)\n\n\n\nFiltering against the URL\n\n\nAnother style of filtering might involve restricting the queryset based on some part of the URL.\n\n\nFor example if your URL config contained an entry like this:\n\n\nurl('^purchases/(?P\nusername\n.+)/$', PurchaseList.as_view()),\n\n\n\nYou could then write a view that returned a purchase queryset filtered by the username portion of the URL:\n\n\nclass PurchaseList(generics.ListAPIView):\n serializer_class = PurchaseSerializer\n\n def get_queryset(self):\n \"\"\"\n This view should return a list of all the purchases for\n the user as determined by the username portion of the URL.\n \"\"\"\n username = self.kwargs['username']\n return Purchase.objects.filter(purchaser__username=username)\n\n\n\nFiltering against query parameters\n\n\nA final example of filtering the initial queryset would be to determine the initial queryset based on query parameters in the url.\n\n\nWe can override \n.get_queryset()\n to deal with URLs such as \nhttp://example.com/api/purchases?username=denvercoder9\n, and filter the queryset only if the \nusername\n parameter is included in the URL:\n\n\nclass PurchaseList(generics.ListAPIView):\n serializer_class = PurchaseSerializer\n\n def get_queryset(self):\n \"\"\"\n Optionally restricts the returned purchases to a given user,\n by filtering against a `username` query parameter in the URL.\n \"\"\"\n queryset = Purchase.objects.all()\n username = self.request.query_params.get('username', None)\n if username is not None:\n queryset = queryset.filter(purchaser__username=username)\n return queryset\n\n\n\n\n\nGeneric Filtering\n\n\nAs well as being able to override the default queryset, REST framework also includes support for generic filtering backends that allow you to easily construct complex searches and filters.\n\n\nGeneric filters can also present themselves as HTML controls in the browsable API and admin API.\n\n\n\n\nSetting filter backends\n\n\nThe default filter backends may be set globally, using the \nDEFAULT_FILTER_BACKENDS\n setting. For example.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',)\n}\n\n\n\nYou can also set the filter backends on a per-view, or per-viewset basis,\nusing the \nGenericAPIView\n class based views.\n\n\nfrom django.contrib.auth.models import User\nfrom myapp.serializers import UserSerializer\nfrom rest_framework import filters\nfrom rest_framework import generics\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer = UserSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n\n\n\nFiltering and object lookups\n\n\nNote that if a filter backend is configured for a view, then as well as being used to filter list views, it will also be used to filter the querysets used for returning a single object.\n\n\nFor instance, given the previous example, and a product with an id of \n4675\n, the following URL would either return the corresponding object, or return a 404 response, depending on if the filtering conditions were met by the given product instance:\n\n\nhttp://example.com/api/products/4675/?category=clothing\nmax_price=10.00\n\n\n\nOverriding the initial queryset\n\n\nNote that you can use both an overridden \n.get_queryset()\n and generic filtering together, and everything will work as expected. For example, if \nProduct\n had a many-to-many relationship with \nUser\n, named \npurchase\n, you might want to write a view like this:\n\n\nclass PurchasedProductsList(generics.ListAPIView):\n \"\"\"\n Return a list of all the products that the authenticated\n user has ever purchased, with optional filtering.\n \"\"\"\n model = Product\n serializer_class = ProductSerializer\n filter_class = ProductFilter\n\n def get_queryset(self):\n user = self.request.user\n return user.purchase_set.all()\n\n\n\n\n\nAPI Guide\n\n\nDjangoFilterBackend\n\n\nThe \nDjangoFilterBackend\n class supports highly customizable field filtering, using the \ndjango-filter package\n.\n\n\nTo use REST framework's \nDjangoFilterBackend\n, first install \ndjango-filter\n.\n\n\npip install django-filter\n\n\n\nIf you are using the browsable API or admin API you may also want to install \ndjango-crispy-forms\n, which will enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML.\n\n\npip install django-crispy-forms\n\n\n\nWith crispy forms installed and added to Django's \nINSTALLED_APPS\n, the browsable API will present a filtering control for \nDjangoFilterBackend\n, like so:\n\n\n\n\nSpecifying filter fields\n\n\nIf all you need is simple equality-based filtering, you can set a \nfilter_fields\n attribute on the view, or viewset, listing the set of fields you wish to filter against.\n\n\nclass ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_fields = ('category', 'in_stock')\n\n\n\nThis will automatically create a \nFilterSet\n class for the given fields, and will allow you to make requests such as:\n\n\nhttp://example.com/api/products?category=clothing\nin_stock=True\n\n\n\nSpecifying a FilterSet\n\n\nFor more advanced filtering requirements you can specify a \nFilterSet\n class that should be used by the view. For example:\n\n\nimport django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import filters\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n min_price = django_filters.NumberFilter(name=\"price\", lookup_type='gte')\n max_price = django_filters.NumberFilter(name=\"price\", lookup_type='lte')\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'min_price', 'max_price']\n\nclass ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_class = ProductFilter\n\n\n\nWhich will allow you to make requests such as:\n\n\nhttp://example.com/api/products?category=clothing\nmax_price=10.00\n\n\n\nYou can also span relationships using \ndjango-filter\n, let's assume that each\nproduct has foreign key to \nManufacturer\n model, so we create filter that\nfilters using \nManufacturer\n name. For example:\n\n\nimport django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer__name']\n\n\n\nThis enables us to make queries like:\n\n\nhttp://example.com/api/products?manufacturer__name=foo\n\n\n\nThis is nice, but it exposes the Django's double underscore convention as part of the API. If you instead want to explicitly name the filter argument you can instead explicitly include it on the \nFilterSet\n class:\n\n\nimport django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n manufacturer = django_filters.CharFilter(name=\"manufacturer__name\")\n\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer']\n\n\n\nAnd now you can execute:\n\n\nhttp://example.com/api/products?manufacturer=foo\n\n\n\nFor more details on using filter sets see the \ndjango-filter documentation\n.\n\n\n\n\nHints \n Tips\n\n\n\n\nBy default filtering is not enabled. If you want to use \nDjangoFilterBackend\n remember to make sure it is installed by using the \n'DEFAULT_FILTER_BACKENDS'\n setting.\n\n\nWhen using boolean fields, you should use the values \nTrue\n and \nFalse\n in the URL query parameters, rather than \n0\n, \n1\n, \ntrue\n or \nfalse\n. (The allowed boolean values are currently hardwired in Django's \nNullBooleanSelect implementation\n.)\n\n\ndjango-filter\n supports filtering across relationships, using Django's double-underscore syntax.\n\n\nFor Django 1.3 support, make sure to install \ndjango-filter\n version 0.5.4, as later versions drop support for 1.3.\n\n\n\n\n\n\nSearchFilter\n\n\nThe \nSearchFilter\n class supports simple single query parameter based searching, and is based on the \nDjango admin's search functionality\n.\n\n\nWhen in use, the browsable API will include a \nSearchFilter\n control:\n\n\n\n\nThe \nSearchFilter\n class will only be applied if the view has a \nsearch_fields\n attribute set. The \nsearch_fields\n attribute should be a list of names of text type fields on the model, such as \nCharField\n or \nTextField\n.\n\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer = UserSerializer\n filter_backends = (filters.SearchFilter,)\n search_fields = ('username', 'email')\n\n\n\nThis will allow the client to filter the items in the list by making queries such as:\n\n\nhttp://example.com/api/users?search=russell\n\n\n\nYou can also perform a related lookup on a ForeignKey or ManyToManyField with the lookup API double-underscore notation:\n\n\nsearch_fields = ('username', 'email', 'profile__profession')\n\n\n\nBy default, searches will use case-insensitive partial matches. The search parameter may contain multiple search terms, which should be whitespace and/or comma separated. If multiple search terms are used then objects will be returned in the list only if all the provided terms are matched.\n\n\nThe search behavior may be restricted by prepending various characters to the \nsearch_fields\n.\n\n\n\n\n'^' Starts-with search.\n\n\n'=' Exact matches.\n\n\n'@' Full-text search. (Currently only supported Django's MySQL backend.)\n\n\n'$' Regex search.\n\n\n\n\nFor example:\n\n\nsearch_fields = ('=username', '=email')\n\n\n\nBy default, the search parameter is named \n'search\n', but this may be overridden with the \nSEARCH_PARAM\n setting.\n\n\nFor more details, see the \nDjango documentation\n.\n\n\n\n\nOrderingFilter\n\n\nThe \nOrderingFilter\n class supports simple query parameter controlled ordering of results.\n\n\n\n\nBy default, the query parameter is named \n'ordering'\n, but this may by overridden with the \nORDERING_PARAM\n setting.\n\n\nFor example, to order users by username:\n\n\nhttp://example.com/api/users?ordering=username\n\n\n\nThe client may also specify reverse orderings by prefixing the field name with '-', like so:\n\n\nhttp://example.com/api/users?ordering=-username\n\n\n\nMultiple orderings may also be specified:\n\n\nhttp://example.com/api/users?ordering=account,username\n\n\n\nSpecifying which fields may be ordered against\n\n\nIt's recommended that you explicitly specify which fields the API should allowing in the ordering filter. You can do this by setting an \nordering_fields\n attribute on the view, like so:\n\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n filter_backends = (filters.OrderingFilter,)\n ordering_fields = ('username', 'email')\n\n\n\nThis helps prevent unexpected data leakage, such as allowing users to order against a password hash field or other sensitive data.\n\n\nIf you \ndon't\n specify an \nordering_fields\n attribute on the view, the filter class will default to allowing the user to filter on any readable fields on the serializer specified by the \nserializer_class\n attribute.\n\n\nIf you are confident that the queryset being used by the view doesn't contain any sensitive data, you can also explicitly specify that a view should allow ordering on \nany\n model field or queryset aggregate, by using the special value \n'__all__'\n.\n\n\nclass BookingsListView(generics.ListAPIView):\n queryset = Booking.objects.all()\n serializer_class = BookingSerializer\n filter_backends = (filters.OrderingFilter,)\n ordering_fields = '__all__'\n\n\n\nSpecifying a default ordering\n\n\nIf an \nordering\n attribute is set on the view, this will be used as the default ordering.\n\n\nTypically you'd instead control this by setting \norder_by\n on the initial queryset, but using the \nordering\n parameter on the view allows you to specify the ordering in a way that it can then be passed automatically as context to a rendered template. This makes it possible to automatically render column headers differently if they are being used to order the results.\n\n\nclass UserListView(generics.ListAPIView):\n queryset = User.objects.all()\n serializer_class = UserSerializer\n filter_backends = (filters.OrderingFilter,)\n ordering_fields = ('username', 'email')\n ordering = ('username',)\n\n\n\nThe \nordering\n attribute may be either a string or a list/tuple of strings.\n\n\n\n\nDjangoObjectPermissionsFilter\n\n\nThe \nDjangoObjectPermissionsFilter\n is intended to be used together with the \ndjango-guardian\n package, with custom \n'view'\n permissions added. The filter will ensure that querysets only returns objects for which the user has the appropriate view permission.\n\n\nIf you're using \nDjangoObjectPermissionsFilter\n, you'll probably also want to add an appropriate object permissions class, to ensure that users can only operate on instances if they have the appropriate object permissions. The easiest way to do this is to subclass \nDjangoObjectPermissions\n and add \n'view'\n permissions to the \nperms_map\n attribute.\n\n\nA complete example using both \nDjangoObjectPermissionsFilter\n and \nDjangoObjectPermissions\n might look something like this.\n\n\npermissions.py\n:\n\n\nclass CustomObjectPermissions(permissions.DjangoObjectPermissions):\n \"\"\"\n Similar to `DjangoObjectPermissions`, but adding 'view' permissions.\n \"\"\"\n perms_map = {\n 'GET': ['%(app_label)s.view_%(model_name)s'],\n 'OPTIONS': ['%(app_label)s.view_%(model_name)s'],\n 'HEAD': ['%(app_label)s.view_%(model_name)s'],\n 'POST': ['%(app_label)s.add_%(model_name)s'],\n 'PUT': ['%(app_label)s.change_%(model_name)s'],\n 'PATCH': ['%(app_label)s.change_%(model_name)s'],\n 'DELETE': ['%(app_label)s.delete_%(model_name)s'],\n }\n\n\n\nviews.py\n:\n\n\nclass EventViewSet(viewsets.ModelViewSet):\n \"\"\"\n Viewset that only lists events if user has 'view' permissions, and only\n allows operations on individual events if user has appropriate 'view', 'add',\n 'change' or 'delete' permissions.\n \"\"\"\n queryset = Event.objects.all()\n serializer = EventSerializer\n filter_backends = (filters.DjangoObjectPermissionsFilter,)\n permission_classes = (myapp.permissions.CustomObjectPermissions,)\n\n\n\nFor more information on adding \n'view'\n permissions for models, see the \nrelevant section\n of the \ndjango-guardian\n documentation, and \nthis blogpost\n.\n\n\n\n\nCustom generic filtering\n\n\nYou can also provide your own generic filtering backend, or write an installable app for other developers to use.\n\n\nTo do so override \nBaseFilterBackend\n, and override the \n.filter_queryset(self, request, queryset, view)\n method. The method should return a new, filtered queryset.\n\n\nAs well as allowing clients to perform searches and filtering, generic filter backends can be useful for restricting which objects should be visible to any given request or user.\n\n\nExample\n\n\nFor example, you might need to restrict users to only being able to see objects they created.\n\n\nclass IsOwnerFilterBackend(filters.BaseFilterBackend):\n \"\"\"\n Filter that only allows users to see their own objects.\n \"\"\"\n def filter_queryset(self, request, queryset, view):\n return queryset.filter(owner=request.user)\n\n\n\nWe could achieve the same behavior by overriding \nget_queryset()\n on the views, but using a filter backend allows you to more easily add this restriction to multiple views, or to apply it across the entire API.\n\n\nCustomizing the interface\n\n\nGeneric filters may also present an interface in the browsable API. To do so you should implement a \nto_html()\n method which returns a rendered HTML representation of the filter. This method should have the following signature:\n\n\nto_html(self, request, queryset, view)\n\n\nThe method should return a rendered HTML string.\n\n\nThird party packages\n\n\nThe following third party packages provide additional filter implementations.\n\n\nDjango REST framework filters package\n\n\nThe \ndjango-rest-framework-filters package\n works together with the \nDjangoFilterBackend\n class, and allows you to easily create filters across relationships, or create multiple filter lookup types for a given field.\n\n\nDjango REST framework full word search filter\n\n\nThe \ndjangorestframework-word-filter\n developed as alternative to \nfilters.SearchFilter\n which will search full word in text, or exact match.\n\n\nDjango URL Filter\n\n\ndjango-url-filter\n provides a safe way to filter data via human-friendly URLs. It works very similar to DRF serializers and fields in a sense that they can be nested except they are called filtersets and filters. That provides easy way to filter related data. Also this library is generic-purpose so it can be used to filter other sources of data and not only Django \nQuerySet\ns.",
"title": "Filtering"
},
{
@@ -1997,7 +1997,7 @@
},
{
"location": "/api-guide/filtering/#djangofilterbackend",
- "text": "The DjangoFilterBackend class supports highly customizable field filtering, using the django-filter package . To use REST framework's DjangoFilterBackend , first install django-filter . pip install django-filter If you are using the browsable API or admin API you may also want to install crispy-forms , which will enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML. pip install django-crispy-forms With crispy forms installed, the browsable API will present a filtering control for DjangoFilterBackend , like so: Specifying filter fields If all you need is simple equality-based filtering, you can set a filter_fields attribute on the view, or viewset, listing the set of fields you wish to filter against. class ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_fields = ('category', 'in_stock') This will automatically create a FilterSet class for the given fields, and will allow you to make requests such as: http://example.com/api/products?category=clothing in_stock=True Specifying a FilterSet For more advanced filtering requirements you can specify a FilterSet class that should be used by the view. For example: import django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import filters\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n min_price = django_filters.NumberFilter(name=\"price\", lookup_type='gte')\n max_price = django_filters.NumberFilter(name=\"price\", lookup_type='lte')\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'min_price', 'max_price']\n\nclass ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_class = ProductFilter Which will allow you to make requests such as: http://example.com/api/products?category=clothing max_price=10.00 You can also span relationships using django-filter , let's assume that each\nproduct has foreign key to Manufacturer model, so we create filter that\nfilters using Manufacturer name. For example: import django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer__name'] This enables us to make queries like: http://example.com/api/products?manufacturer__name=foo This is nice, but it exposes the Django's double underscore convention as part of the API. If you instead want to explicitly name the filter argument you can instead explicitly include it on the FilterSet class: import django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n manufacturer = django_filters.CharFilter(name=\"manufacturer__name\")\n\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer'] And now you can execute: http://example.com/api/products?manufacturer=foo For more details on using filter sets see the django-filter documentation . Hints Tips By default filtering is not enabled. If you want to use DjangoFilterBackend remember to make sure it is installed by using the 'DEFAULT_FILTER_BACKENDS' setting. When using boolean fields, you should use the values True and False in the URL query parameters, rather than 0 , 1 , true or false . (The allowed boolean values are currently hardwired in Django's NullBooleanSelect implementation .) django-filter supports filtering across relationships, using Django's double-underscore syntax. For Django 1.3 support, make sure to install django-filter version 0.5.4, as later versions drop support for 1.3.",
+ "text": "The DjangoFilterBackend class supports highly customizable field filtering, using the django-filter package . To use REST framework's DjangoFilterBackend , first install django-filter . pip install django-filter If you are using the browsable API or admin API you may also want to install django-crispy-forms , which will enhance the presentation of the filter forms in HTML views, by allowing them to render Bootstrap 3 HTML. pip install django-crispy-forms With crispy forms installed and added to Django's INSTALLED_APPS , the browsable API will present a filtering control for DjangoFilterBackend , like so: Specifying filter fields If all you need is simple equality-based filtering, you can set a filter_fields attribute on the view, or viewset, listing the set of fields you wish to filter against. class ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_fields = ('category', 'in_stock') This will automatically create a FilterSet class for the given fields, and will allow you to make requests such as: http://example.com/api/products?category=clothing in_stock=True Specifying a FilterSet For more advanced filtering requirements you can specify a FilterSet class that should be used by the view. For example: import django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import filters\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n min_price = django_filters.NumberFilter(name=\"price\", lookup_type='gte')\n max_price = django_filters.NumberFilter(name=\"price\", lookup_type='lte')\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'min_price', 'max_price']\n\nclass ProductList(generics.ListAPIView):\n queryset = Product.objects.all()\n serializer_class = ProductSerializer\n filter_backends = (filters.DjangoFilterBackend,)\n filter_class = ProductFilter Which will allow you to make requests such as: http://example.com/api/products?category=clothing max_price=10.00 You can also span relationships using django-filter , let's assume that each\nproduct has foreign key to Manufacturer model, so we create filter that\nfilters using Manufacturer name. For example: import django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer__name'] This enables us to make queries like: http://example.com/api/products?manufacturer__name=foo This is nice, but it exposes the Django's double underscore convention as part of the API. If you instead want to explicitly name the filter argument you can instead explicitly include it on the FilterSet class: import django_filters\nfrom myapp.models import Product\nfrom myapp.serializers import ProductSerializer\nfrom rest_framework import generics\n\nclass ProductFilter(django_filters.FilterSet):\n manufacturer = django_filters.CharFilter(name=\"manufacturer__name\")\n\n class Meta:\n model = Product\n fields = ['category', 'in_stock', 'manufacturer'] And now you can execute: http://example.com/api/products?manufacturer=foo For more details on using filter sets see the django-filter documentation . Hints Tips By default filtering is not enabled. If you want to use DjangoFilterBackend remember to make sure it is installed by using the 'DEFAULT_FILTER_BACKENDS' setting. When using boolean fields, you should use the values True and False in the URL query parameters, rather than 0 , 1 , true or false . (The allowed boolean values are currently hardwired in Django's NullBooleanSelect implementation .) django-filter supports filtering across relationships, using Django's double-underscore syntax. For Django 1.3 support, make sure to install django-filter version 0.5.4, as later versions drop support for 1.3.",
"title": "DjangoFilterBackend"
},
{
@@ -2052,12 +2052,12 @@
},
{
"location": "/api-guide/pagination/",
- "text": "Pagination\n\n\n\n\nDjango provides a few classes that help you manage paginated data \u2013 that is, data that\u2019s split across several pages, with \u201cPrevious/Next\u201d links.\n\n\n \nDjango documentation\n\n\n\n\nREST framework includes support for customizable pagination styles. This allows you to modify how large result sets are split into individual pages of data.\n\n\nThe pagination API can support either:\n\n\n\n\nPagination links that are provided as part of the content of the response.\n\n\nPagination links that are included in response headers, such as \nContent-Range\n or \nLink\n.\n\n\n\n\nThe built-in styles currently all use links included as part of the content of the response. This style is more accessible when using the browsable API.\n\n\nPagination is only performed automatically if you're using the generic views or viewsets. If you're using a regular \nAPIView\n, you'll need to call into the pagination API yourself to ensure you return a paginated response. See the source code for the \nmixins.ListModelMixin\n and \ngenerics.GenericAPIView\n classes for an example.\n\n\nSetting the pagination style\n\n\nThe default pagination style may be set globally, using the \nDEFAULT_PAGINATION_CLASS\n settings key. For example, to use the built-in limit/offset pagination, you would do:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination'\n}\n\n\n\nYou can also set the pagination class on an individual view by using the \npagination_class\n attribute. Typically you'll want to use the same pagination style throughout your API, although you might want to vary individual aspects of the pagination, such as default or maximum page size, on a per-view basis.\n\n\nModifying the pagination style\n\n\nIf you want to modify particular aspects of the pagination style, you'll want to override one of the pagination classes, and set the attributes that you want to change.\n\n\nclass LargeResultsSetPagination(PageNumberPagination):\n page_size = 1000\n page_size_query_param = 'page_size'\n max_page_size = 10000\n\nclass StandardResultsSetPagination(PageNumberPagination):\n page_size = 100\n page_size_query_param = 'page_size'\n max_page_size = 1000\n\n\n\nYou can then apply your new style to a view using the \n.pagination_class\n attribute:\n\n\nclass BillingRecordsView(generics.ListAPIView):\n queryset = Billing.objects.all()\n serializer = BillingRecordsSerializer\n pagination_class = LargeResultsSetPagination\n\n\n\nOr apply the style globally, using the \nDEFAULT_PAGINATION_CLASS\n settings key. For example:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'apps.core.pagination.StandardResultsSetPagination'\n }\n\n\n\n\n\nAPI Reference\n\n\nPageNumberPagination\n\n\nThis pagination style accepts a single number page number in the request query parameters.\n\n\nRequest\n:\n\n\nGET https://api.example.org/accounts/?page=4\n\n\n\nResponse\n:\n\n\nHTTP 200 OK\n{\n \"count\": 1023\n \"next\": \"https://api.example.org/accounts/?page=5\",\n \"previous\": \"https://api.example.org/accounts/?page=3\",\n \"results\": [\n \u2026\n ]\n}\n\n\n\nSetup\n\n\nTo enable the \nPageNumberPagination\n style globally, use the following configuration, modifying the \nPAGE_SIZE\n as desired:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nOn \nGenericAPIView\n subclasses you may also set the \npagination_class\n attribute to select \nPageNumberPagination\n on a per-view basis.\n\n\nConfiguration\n\n\nThe \nPageNumberPagination\n class includes a number of attributes that may be overridden to modify the pagination style.\n\n\nTo set these attributes you should override the \nPageNumberPagination\n class, and then enable your custom pagination class as above.\n\n\n\n\npage_size\n - A numeric value indicating the page size. If set, this overrides the \nPAGE_SIZE\n setting. Defaults to the same value as the \nPAGE_SIZE\n settings key.\n\n\npage_query_param\n - A string value indicating the name of the query parameter to use for the pagination control.\n\n\npage_size_query_param\n - If set, this is a string value indicating the name of a query parameter that allows the client to set the page size on a per-request basis. Defaults to \nNone\n, indicating that the client may not control the requested page size.\n\n\nmax_page_size\n - If set, this is a numeric value indicating the maximum allowable requested page size. This attribute is only valid if \npage_size_query_param\n is also set.\n\n\nlast_page_strings\n - A list or tuple of string values indicating values that may be used with the \npage_query_param\n to request the final page in the set. Defaults to \n('last',)\n\n\ntemplate\n - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to \nNone\n to disable HTML pagination controls completely. Defaults to \n\"rest_framework/pagination/numbers.html\"\n.\n\n\n\n\n\n\nLimitOffsetPagination\n\n\nThis pagination style mirrors the syntax used when looking up multiple database records. The client includes both a \"limit\" and an \n\"offset\" query parameter. The limit indicates the maximum number of items to return, and is equivalent to the \npage_size\n in other styles. The offset indicates the starting position of the query in relation to the complete set of unpaginated items.\n\n\nRequest\n:\n\n\nGET https://api.example.org/accounts/?limit=100\noffset=400\n\n\n\nResponse\n:\n\n\nHTTP 200 OK\n{\n \"count\": 1023\n \"next\": \"https://api.example.org/accounts/?limit=100\noffset=500\",\n \"previous\": \"https://api.example.org/accounts/?limit=100\noffset=300\",\n \"results\": [\n \u2026\n ]\n}\n\n\n\nSetup\n\n\nTo enable the \nLimitOffsetPagination\n style globally, use the following configuration:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination'\n}\n\n\n\nOptionally, you may also set a \nPAGE_SIZE\n key. If the \nPAGE_SIZE\n parameter is also used then the \nlimit\n query parameter will be optional, and may be omitted by the client.\n\n\nOn \nGenericAPIView\n subclasses you may also set the \npagination_class\n attribute to select \nLimitOffsetPagination\n on a per-view basis.\n\n\nConfiguration\n\n\nThe \nLimitOffsetPagination\n class includes a number of attributes that may be overridden to modify the pagination style.\n\n\nTo set these attributes you should override the \nLimitOffsetPagination\n class, and then enable your custom pagination class as above.\n\n\n\n\ndefault_limit\n - A numeric value indicating the limit to use if one is not provided by the client in a query parameter. Defaults to the same value as the \nPAGE_SIZE\n settings key.\n\n\nlimit_query_param\n - A string value indicating the name of the \"limit\" query parameter. Defaults to \n'limit'\n.\n\n\noffset_query_param\n - A string value indicating the name of the \"offset\" query parameter. Defaults to \n'offset'\n.\n\n\nmax_limit\n - If set this is a numeric value indicating the maximum allowable limit that may be requested by the client. Defaults to \nNone\n.\n\n\ntemplate\n - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to \nNone\n to disable HTML pagination controls completely. Defaults to \n\"rest_framework/pagination/numbers.html\"\n.\n\n\n\n\n\n\nCursorPagination\n\n\nThe cursor-based pagination presents an opaque \"cursor\" indicator that the client may use to page through the result set. This pagination style only presents forward and reverse controls, and does not allow the client to navigate to arbitrary positions.\n\n\nCursor based pagination requires that there is a unique, unchanging ordering of items in the result set. This ordering might typically be a creation timestamp on the records, as this presents a consistent ordering to paginate against.\n\n\nCursor based pagination is more complex than other schemes. It also requires that the result set presents a fixed ordering, and does not allow the client to arbitrarily index into the result set. However it does provide the following benefits:\n\n\n\n\nProvides a consistent pagination view. When used properly \nCursorPagination\n ensures that the client will never see the same item twice when paging through records, even when new items are being inserted by other clients during the pagination process.\n\n\nSupports usage with very large datasets. With extremely large datasets pagination using offset-based pagination styles may become inefficient or unusable. Cursor based pagination schemes instead have fixed-time properties, and do not slow down as the dataset size increases.\n\n\n\n\nDetails and limitations\n\n\nProper use of cursor based pagination requires a little attention to detail. You'll need to think about what ordering you want the scheme to be applied against. The default is to order by \n\"-created\"\n. This assumes that \nthere must be a 'created' timestamp field\n on the model instances, and will present a \"timeline\" style paginated view, with the most recently added items first.\n\n\nYou can modify the ordering by overriding the \n'ordering'\n attribute on the pagination class, or by using the \nOrderingFilter\n filter class together with \nCursorPagination\n. When used with \nOrderingFilter\n you should strongly consider restricting the fields that the user may order by.\n\n\nProper usage of cursor pagination should have an ordering field that satisfies the following:\n\n\n\n\nShould be an unchanging value, such as a timestamp, slug, or other field that is only set once, on creation.\n\n\nShould be unique, or nearly unique. Millisecond precision timestamps are a good example. This implementation of cursor pagination uses a smart \"position plus offset\" style that allows it to properly support not-strictly-unique values as the ordering.\n\n\nShould be a non-nullable value that can be coerced to a string.\n\n\nThe field should have a database index.\n\n\n\n\nUsing an ordering field that does not satisfy these constraints will generally still work, but you'll be loosing some of the benefits of cursor pagination.\n\n\nFor more technical details on the implementation we use for cursor pagination, the \n\"Building cursors for the Disqus API\"\n blog post gives a good overview of the basic approach.\n\n\nSetup\n\n\nTo enable the \nCursorPagination\n style globally, use the following configuration, modifying the \nPAGE_SIZE\n as desired:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.CursorPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nOn \nGenericAPIView\n subclasses you may also set the \npagination_class\n attribute to select \nCursorPagination\n on a per-view basis.\n\n\nConfiguration\n\n\nThe \nCursorPagination\n class includes a number of attributes that may be overridden to modify the pagination style.\n\n\nTo set these attributes you should override the \nCursorPagination\n class, and then enable your custom pagination class as above.\n\n\n\n\npage_size\n = A numeric value indicating the page size. If set, this overrides the \nPAGE_SIZE\n setting. Defaults to the same value as the \nPAGE_SIZE\n settings key.\n\n\ncursor_query_param\n = A string value indicating the name of the \"cursor\" query parameter. Defaults to \n'cursor'\n.\n\n\nordering\n = This should be a string, or list of strings, indicating the field against which the cursor based pagination will be applied. For example: \nordering = 'slug'\n. Defaults to \n-created\n. This value may also be overridden by using \nOrderingFilter\n on the view.\n\n\ntemplate\n = The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to \nNone\n to disable HTML pagination controls completely. Defaults to \n\"rest_framework/pagination/previous_and_next.html\"\n.\n\n\n\n\n\n\nCustom pagination styles\n\n\nTo create a custom pagination serializer class you should subclass \npagination.BasePagination\n and override the \npaginate_queryset(self, queryset, request, view=None)\n and \nget_paginated_response(self, data)\n methods:\n\n\n\n\nThe \npaginate_queryset\n method is passed the initial queryset and should return an iterable object that contains only the data in the requested page.\n\n\nThe \nget_paginated_response\n method is passed the serialized page data and should return a \nResponse\n instance.\n\n\n\n\nNote that the \npaginate_queryset\n method may set state on the pagination instance, that may later be used by the \nget_paginated_response\n method.\n\n\nExample\n\n\nSuppose we want to replace the default pagination output style with a modified format that includes the next and previous links under in a nested 'links' key. We could specify a custom pagination class like so:\n\n\nclass CustomPagination(pagination.PageNumberPagination):\n def get_paginated_response(self, data):\n return Response({\n 'links': {\n 'next': self.get_next_link(),\n 'previous': self.get_previous_link()\n },\n 'count': self.page.paginator.count,\n 'results': data\n })\n\n\n\nWe'd then need to setup the custom class in our configuration:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'my_project.apps.core.pagination.CustomPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nNote that if you care about how the ordering of keys is displayed in responses in the browsable API you might choose to use an \nOrderedDict\n when constructing the body of paginated responses, but this is optional.\n\n\nHeader based pagination\n\n\nLet's modify the built-in \nPageNumberPagination\n style, so that instead of include the pagination links in the body of the response, we'll instead include a \nLink\n header, in a \nsimilar style to the GitHub API\n.\n\n\nclass LinkHeaderPagination(pagination.PageNumberPagination):\n def get_paginated_response(self, data):\n next_url = self.get_next_link()\n previous_url = self.get_previous_link()\n\n if next_url is not None and previous_url is not None:\n link = '\n{next_url}\n; rel=\"next\", \n{previous_url}\n; rel=\"prev\"'\n elif next_url is not None:\n link = '\n{next_url}\n; rel=\"next\"'\n elif previous_url is not None:\n link = '\n{previous_url}\n; rel=\"prev\"'\n else:\n link = ''\n\n link = link.format(next_url=next_url, previous_url=previous_url)\n headers = {'Link': link} if link else {}\n\n return Response(data, headers=headers)\n\n\n\nUsing your custom pagination class\n\n\nTo have your custom pagination class be used by default, use the \nDEFAULT_PAGINATION_CLASS\n setting:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'my_project.apps.core.pagination.LinkHeaderPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nAPI responses for list endpoints will now include a \nLink\n header, instead of including the pagination links as part of the body of the response, for example:\n\n\n\n\n\n\nA custom pagination style, using the 'Link' header'\n\n\n\n\nHTML pagination controls\n\n\nBy default using the pagination classes will cause HTML pagination controls to be displayed in the browsable API. There are two built-in display styles. The \nPageNumberPagination\n and \nLimitOffsetPagination\n classes display a list of page numbers with previous and next controls. The \nCursorPagination\n class displays a simpler style that only displays a previous and next control.\n\n\nCustomizing the controls\n\n\nYou can override the templates that render the HTML pagination controls. The two built-in styles are:\n\n\n\n\nrest_framework/pagination/numbers.html\n\n\nrest_framework/pagination/previous_and_next.html\n\n\n\n\nProviding a template with either of these paths in a global template directory will override the default rendering for the relevant pagination classes.\n\n\nAlternatively you can disable HTML pagination controls completely by subclassing on of the existing classes, setting \ntemplate = None\n as an attribute on the class. You'll then need to configure your \nDEFAULT_PAGINATION_CLASS\n settings key to use your custom class as the default pagination style.\n\n\nLow-level API\n\n\nThe low-level API for determining if a pagination class should display the controls or not is exposed as a \ndisplay_page_controls\n attribute on the pagination instance. Custom pagination classes should be set to \nTrue\n in the \npaginate_queryset\n method if they require the HTML pagination controls to be displayed.\n\n\nThe \n.to_html()\n and \n.get_html_context()\n methods may also be overridden in a custom pagination class in order to further customize how the controls are rendered.\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nDRF-extensions\n\n\nThe \nDRF-extensions\n package\n includes a \nPaginateByMaxMixin\n mixin class\n that allows your API clients to specify \n?page_size=max\n to obtain the maximum allowed page size.",
+ "text": "Pagination\n\n\n\n\nDjango provides a few classes that help you manage paginated data \u2013 that is, data that\u2019s split across several pages, with \u201cPrevious/Next\u201d links.\n\n\n \nDjango documentation\n\n\n\n\nREST framework includes support for customizable pagination styles. This allows you to modify how large result sets are split into individual pages of data.\n\n\nThe pagination API can support either:\n\n\n\n\nPagination links that are provided as part of the content of the response.\n\n\nPagination links that are included in response headers, such as \nContent-Range\n or \nLink\n.\n\n\n\n\nThe built-in styles currently all use links included as part of the content of the response. This style is more accessible when using the browsable API.\n\n\nPagination is only performed automatically if you're using the generic views or viewsets. If you're using a regular \nAPIView\n, you'll need to call into the pagination API yourself to ensure you return a paginated response. See the source code for the \nmixins.ListModelMixin\n and \ngenerics.GenericAPIView\n classes for an example.\n\n\nPagination can be turned off by setting the pagination class to \nNone\n.\n\n\nSetting the pagination style\n\n\nThe default pagination style may be set globally, using the \nDEFAULT_PAGINATION_CLASS\n settings key. For example, to use the built-in limit/offset pagination, you would do:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination'\n}\n\n\n\nYou can also set the pagination class on an individual view by using the \npagination_class\n attribute. Typically you'll want to use the same pagination style throughout your API, although you might want to vary individual aspects of the pagination, such as default or maximum page size, on a per-view basis.\n\n\nModifying the pagination style\n\n\nIf you want to modify particular aspects of the pagination style, you'll want to override one of the pagination classes, and set the attributes that you want to change.\n\n\nclass LargeResultsSetPagination(PageNumberPagination):\n page_size = 1000\n page_size_query_param = 'page_size'\n max_page_size = 10000\n\nclass StandardResultsSetPagination(PageNumberPagination):\n page_size = 100\n page_size_query_param = 'page_size'\n max_page_size = 1000\n\n\n\nYou can then apply your new style to a view using the \n.pagination_class\n attribute:\n\n\nclass BillingRecordsView(generics.ListAPIView):\n queryset = Billing.objects.all()\n serializer = BillingRecordsSerializer\n pagination_class = LargeResultsSetPagination\n\n\n\nOr apply the style globally, using the \nDEFAULT_PAGINATION_CLASS\n settings key. For example:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'apps.core.pagination.StandardResultsSetPagination'\n }\n\n\n\n\n\nAPI Reference\n\n\nPageNumberPagination\n\n\nThis pagination style accepts a single number page number in the request query parameters.\n\n\nRequest\n:\n\n\nGET https://api.example.org/accounts/?page=4\n\n\n\nResponse\n:\n\n\nHTTP 200 OK\n{\n \"count\": 1023\n \"next\": \"https://api.example.org/accounts/?page=5\",\n \"previous\": \"https://api.example.org/accounts/?page=3\",\n \"results\": [\n \u2026\n ]\n}\n\n\n\nSetup\n\n\nTo enable the \nPageNumberPagination\n style globally, use the following configuration, modifying the \nPAGE_SIZE\n as desired:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nOn \nGenericAPIView\n subclasses you may also set the \npagination_class\n attribute to select \nPageNumberPagination\n on a per-view basis.\n\n\nConfiguration\n\n\nThe \nPageNumberPagination\n class includes a number of attributes that may be overridden to modify the pagination style.\n\n\nTo set these attributes you should override the \nPageNumberPagination\n class, and then enable your custom pagination class as above.\n\n\n\n\ndjango_paginator_class\n - The Django Paginator class to use. Default is \ndjango.core.paginator.Paginator\n, which should be fine for most usecases.\n\n\npage_size\n - A numeric value indicating the page size. If set, this overrides the \nPAGE_SIZE\n setting. Defaults to the same value as the \nPAGE_SIZE\n settings key.\n\n\npage_query_param\n - A string value indicating the name of the query parameter to use for the pagination control.\n\n\npage_size_query_param\n - If set, this is a string value indicating the name of a query parameter that allows the client to set the page size on a per-request basis. Defaults to \nNone\n, indicating that the client may not control the requested page size.\n\n\nmax_page_size\n - If set, this is a numeric value indicating the maximum allowable requested page size. This attribute is only valid if \npage_size_query_param\n is also set.\n\n\nlast_page_strings\n - A list or tuple of string values indicating values that may be used with the \npage_query_param\n to request the final page in the set. Defaults to \n('last',)\n\n\ntemplate\n - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to \nNone\n to disable HTML pagination controls completely. Defaults to \n\"rest_framework/pagination/numbers.html\"\n.\n\n\n\n\n\n\nLimitOffsetPagination\n\n\nThis pagination style mirrors the syntax used when looking up multiple database records. The client includes both a \"limit\" and an \n\"offset\" query parameter. The limit indicates the maximum number of items to return, and is equivalent to the \npage_size\n in other styles. The offset indicates the starting position of the query in relation to the complete set of unpaginated items.\n\n\nRequest\n:\n\n\nGET https://api.example.org/accounts/?limit=100\noffset=400\n\n\n\nResponse\n:\n\n\nHTTP 200 OK\n{\n \"count\": 1023\n \"next\": \"https://api.example.org/accounts/?limit=100\noffset=500\",\n \"previous\": \"https://api.example.org/accounts/?limit=100\noffset=300\",\n \"results\": [\n \u2026\n ]\n}\n\n\n\nSetup\n\n\nTo enable the \nLimitOffsetPagination\n style globally, use the following configuration:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination'\n}\n\n\n\nOptionally, you may also set a \nPAGE_SIZE\n key. If the \nPAGE_SIZE\n parameter is also used then the \nlimit\n query parameter will be optional, and may be omitted by the client.\n\n\nOn \nGenericAPIView\n subclasses you may also set the \npagination_class\n attribute to select \nLimitOffsetPagination\n on a per-view basis.\n\n\nConfiguration\n\n\nThe \nLimitOffsetPagination\n class includes a number of attributes that may be overridden to modify the pagination style.\n\n\nTo set these attributes you should override the \nLimitOffsetPagination\n class, and then enable your custom pagination class as above.\n\n\n\n\ndefault_limit\n - A numeric value indicating the limit to use if one is not provided by the client in a query parameter. Defaults to the same value as the \nPAGE_SIZE\n settings key.\n\n\nlimit_query_param\n - A string value indicating the name of the \"limit\" query parameter. Defaults to \n'limit'\n.\n\n\noffset_query_param\n - A string value indicating the name of the \"offset\" query parameter. Defaults to \n'offset'\n.\n\n\nmax_limit\n - If set this is a numeric value indicating the maximum allowable limit that may be requested by the client. Defaults to \nNone\n.\n\n\ntemplate\n - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to \nNone\n to disable HTML pagination controls completely. Defaults to \n\"rest_framework/pagination/numbers.html\"\n.\n\n\n\n\n\n\nCursorPagination\n\n\nThe cursor-based pagination presents an opaque \"cursor\" indicator that the client may use to page through the result set. This pagination style only presents forward and reverse controls, and does not allow the client to navigate to arbitrary positions.\n\n\nCursor based pagination requires that there is a unique, unchanging ordering of items in the result set. This ordering might typically be a creation timestamp on the records, as this presents a consistent ordering to paginate against.\n\n\nCursor based pagination is more complex than other schemes. It also requires that the result set presents a fixed ordering, and does not allow the client to arbitrarily index into the result set. However it does provide the following benefits:\n\n\n\n\nProvides a consistent pagination view. When used properly \nCursorPagination\n ensures that the client will never see the same item twice when paging through records, even when new items are being inserted by other clients during the pagination process.\n\n\nSupports usage with very large datasets. With extremely large datasets pagination using offset-based pagination styles may become inefficient or unusable. Cursor based pagination schemes instead have fixed-time properties, and do not slow down as the dataset size increases.\n\n\n\n\nDetails and limitations\n\n\nProper use of cursor based pagination requires a little attention to detail. You'll need to think about what ordering you want the scheme to be applied against. The default is to order by \n\"-created\"\n. This assumes that \nthere must be a 'created' timestamp field\n on the model instances, and will present a \"timeline\" style paginated view, with the most recently added items first.\n\n\nYou can modify the ordering by overriding the \n'ordering'\n attribute on the pagination class, or by using the \nOrderingFilter\n filter class together with \nCursorPagination\n. When used with \nOrderingFilter\n you should strongly consider restricting the fields that the user may order by.\n\n\nProper usage of cursor pagination should have an ordering field that satisfies the following:\n\n\n\n\nShould be an unchanging value, such as a timestamp, slug, or other field that is only set once, on creation.\n\n\nShould be unique, or nearly unique. Millisecond precision timestamps are a good example. This implementation of cursor pagination uses a smart \"position plus offset\" style that allows it to properly support not-strictly-unique values as the ordering.\n\n\nShould be a non-nullable value that can be coerced to a string.\n\n\nThe field should have a database index.\n\n\n\n\nUsing an ordering field that does not satisfy these constraints will generally still work, but you'll be loosing some of the benefits of cursor pagination.\n\n\nFor more technical details on the implementation we use for cursor pagination, the \n\"Building cursors for the Disqus API\"\n blog post gives a good overview of the basic approach.\n\n\nSetup\n\n\nTo enable the \nCursorPagination\n style globally, use the following configuration, modifying the \nPAGE_SIZE\n as desired:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.CursorPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nOn \nGenericAPIView\n subclasses you may also set the \npagination_class\n attribute to select \nCursorPagination\n on a per-view basis.\n\n\nConfiguration\n\n\nThe \nCursorPagination\n class includes a number of attributes that may be overridden to modify the pagination style.\n\n\nTo set these attributes you should override the \nCursorPagination\n class, and then enable your custom pagination class as above.\n\n\n\n\npage_size\n = A numeric value indicating the page size. If set, this overrides the \nPAGE_SIZE\n setting. Defaults to the same value as the \nPAGE_SIZE\n settings key.\n\n\ncursor_query_param\n = A string value indicating the name of the \"cursor\" query parameter. Defaults to \n'cursor'\n.\n\n\nordering\n = This should be a string, or list of strings, indicating the field against which the cursor based pagination will be applied. For example: \nordering = 'slug'\n. Defaults to \n-created\n. This value may also be overridden by using \nOrderingFilter\n on the view.\n\n\ntemplate\n = The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to \nNone\n to disable HTML pagination controls completely. Defaults to \n\"rest_framework/pagination/previous_and_next.html\"\n.\n\n\n\n\n\n\nCustom pagination styles\n\n\nTo create a custom pagination serializer class you should subclass \npagination.BasePagination\n and override the \npaginate_queryset(self, queryset, request, view=None)\n and \nget_paginated_response(self, data)\n methods:\n\n\n\n\nThe \npaginate_queryset\n method is passed the initial queryset and should return an iterable object that contains only the data in the requested page.\n\n\nThe \nget_paginated_response\n method is passed the serialized page data and should return a \nResponse\n instance.\n\n\n\n\nNote that the \npaginate_queryset\n method may set state on the pagination instance, that may later be used by the \nget_paginated_response\n method.\n\n\nExample\n\n\nSuppose we want to replace the default pagination output style with a modified format that includes the next and previous links under in a nested 'links' key. We could specify a custom pagination class like so:\n\n\nclass CustomPagination(pagination.PageNumberPagination):\n def get_paginated_response(self, data):\n return Response({\n 'links': {\n 'next': self.get_next_link(),\n 'previous': self.get_previous_link()\n },\n 'count': self.page.paginator.count,\n 'results': data\n })\n\n\n\nWe'd then need to setup the custom class in our configuration:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'my_project.apps.core.pagination.CustomPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nNote that if you care about how the ordering of keys is displayed in responses in the browsable API you might choose to use an \nOrderedDict\n when constructing the body of paginated responses, but this is optional.\n\n\nHeader based pagination\n\n\nLet's modify the built-in \nPageNumberPagination\n style, so that instead of include the pagination links in the body of the response, we'll instead include a \nLink\n header, in a \nsimilar style to the GitHub API\n.\n\n\nclass LinkHeaderPagination(pagination.PageNumberPagination):\n def get_paginated_response(self, data):\n next_url = self.get_next_link()\n previous_url = self.get_previous_link()\n\n if next_url is not None and previous_url is not None:\n link = '\n{next_url}\n; rel=\"next\", \n{previous_url}\n; rel=\"prev\"'\n elif next_url is not None:\n link = '\n{next_url}\n; rel=\"next\"'\n elif previous_url is not None:\n link = '\n{previous_url}\n; rel=\"prev\"'\n else:\n link = ''\n\n link = link.format(next_url=next_url, previous_url=previous_url)\n headers = {'Link': link} if link else {}\n\n return Response(data, headers=headers)\n\n\n\nUsing your custom pagination class\n\n\nTo have your custom pagination class be used by default, use the \nDEFAULT_PAGINATION_CLASS\n setting:\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'my_project.apps.core.pagination.LinkHeaderPagination',\n 'PAGE_SIZE': 100\n}\n\n\n\nAPI responses for list endpoints will now include a \nLink\n header, instead of including the pagination links as part of the body of the response, for example:\n\n\n\n\n\n\nA custom pagination style, using the 'Link' header'\n\n\n\n\nHTML pagination controls\n\n\nBy default using the pagination classes will cause HTML pagination controls to be displayed in the browsable API. There are two built-in display styles. The \nPageNumberPagination\n and \nLimitOffsetPagination\n classes display a list of page numbers with previous and next controls. The \nCursorPagination\n class displays a simpler style that only displays a previous and next control.\n\n\nCustomizing the controls\n\n\nYou can override the templates that render the HTML pagination controls. The two built-in styles are:\n\n\n\n\nrest_framework/pagination/numbers.html\n\n\nrest_framework/pagination/previous_and_next.html\n\n\n\n\nProviding a template with either of these paths in a global template directory will override the default rendering for the relevant pagination classes.\n\n\nAlternatively you can disable HTML pagination controls completely by subclassing on of the existing classes, setting \ntemplate = None\n as an attribute on the class. You'll then need to configure your \nDEFAULT_PAGINATION_CLASS\n settings key to use your custom class as the default pagination style.\n\n\nLow-level API\n\n\nThe low-level API for determining if a pagination class should display the controls or not is exposed as a \ndisplay_page_controls\n attribute on the pagination instance. Custom pagination classes should be set to \nTrue\n in the \npaginate_queryset\n method if they require the HTML pagination controls to be displayed.\n\n\nThe \n.to_html()\n and \n.get_html_context()\n methods may also be overridden in a custom pagination class in order to further customize how the controls are rendered.\n\n\n\n\nThird party packages\n\n\nThe following third party packages are also available.\n\n\nDRF-extensions\n\n\nThe \nDRF-extensions\n package\n includes a \nPaginateByMaxMixin\n mixin class\n that allows your API clients to specify \n?page_size=max\n to obtain the maximum allowed page size.",
"title": "Pagination"
},
{
"location": "/api-guide/pagination/#pagination",
- "text": "Django provides a few classes that help you manage paginated data \u2013 that is, data that\u2019s split across several pages, with \u201cPrevious/Next\u201d links. Django documentation REST framework includes support for customizable pagination styles. This allows you to modify how large result sets are split into individual pages of data. The pagination API can support either: Pagination links that are provided as part of the content of the response. Pagination links that are included in response headers, such as Content-Range or Link . The built-in styles currently all use links included as part of the content of the response. This style is more accessible when using the browsable API. Pagination is only performed automatically if you're using the generic views or viewsets. If you're using a regular APIView , you'll need to call into the pagination API yourself to ensure you return a paginated response. See the source code for the mixins.ListModelMixin and generics.GenericAPIView classes for an example.",
+ "text": "Django provides a few classes that help you manage paginated data \u2013 that is, data that\u2019s split across several pages, with \u201cPrevious/Next\u201d links. Django documentation REST framework includes support for customizable pagination styles. This allows you to modify how large result sets are split into individual pages of data. The pagination API can support either: Pagination links that are provided as part of the content of the response. Pagination links that are included in response headers, such as Content-Range or Link . The built-in styles currently all use links included as part of the content of the response. This style is more accessible when using the browsable API. Pagination is only performed automatically if you're using the generic views or viewsets. If you're using a regular APIView , you'll need to call into the pagination API yourself to ensure you return a paginated response. See the source code for the mixins.ListModelMixin and generics.GenericAPIView classes for an example. Pagination can be turned off by setting the pagination class to None .",
"title": "Pagination"
},
{
@@ -2077,7 +2077,7 @@
},
{
"location": "/api-guide/pagination/#pagenumberpagination",
- "text": "This pagination style accepts a single number page number in the request query parameters. Request : GET https://api.example.org/accounts/?page=4 Response : HTTP 200 OK\n{\n \"count\": 1023\n \"next\": \"https://api.example.org/accounts/?page=5\",\n \"previous\": \"https://api.example.org/accounts/?page=3\",\n \"results\": [\n \u2026\n ]\n} Setup To enable the PageNumberPagination style globally, use the following configuration, modifying the PAGE_SIZE as desired: REST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',\n 'PAGE_SIZE': 100\n} On GenericAPIView subclasses you may also set the pagination_class attribute to select PageNumberPagination on a per-view basis. Configuration The PageNumberPagination class includes a number of attributes that may be overridden to modify the pagination style. To set these attributes you should override the PageNumberPagination class, and then enable your custom pagination class as above. page_size - A numeric value indicating the page size. If set, this overrides the PAGE_SIZE setting. Defaults to the same value as the PAGE_SIZE settings key. page_query_param - A string value indicating the name of the query parameter to use for the pagination control. page_size_query_param - If set, this is a string value indicating the name of a query parameter that allows the client to set the page size on a per-request basis. Defaults to None , indicating that the client may not control the requested page size. max_page_size - If set, this is a numeric value indicating the maximum allowable requested page size. This attribute is only valid if page_size_query_param is also set. last_page_strings - A list or tuple of string values indicating values that may be used with the page_query_param to request the final page in the set. Defaults to ('last',) template - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to None to disable HTML pagination controls completely. Defaults to \"rest_framework/pagination/numbers.html\" .",
+ "text": "This pagination style accepts a single number page number in the request query parameters. Request : GET https://api.example.org/accounts/?page=4 Response : HTTP 200 OK\n{\n \"count\": 1023\n \"next\": \"https://api.example.org/accounts/?page=5\",\n \"previous\": \"https://api.example.org/accounts/?page=3\",\n \"results\": [\n \u2026\n ]\n} Setup To enable the PageNumberPagination style globally, use the following configuration, modifying the PAGE_SIZE as desired: REST_FRAMEWORK = {\n 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination',\n 'PAGE_SIZE': 100\n} On GenericAPIView subclasses you may also set the pagination_class attribute to select PageNumberPagination on a per-view basis. Configuration The PageNumberPagination class includes a number of attributes that may be overridden to modify the pagination style. To set these attributes you should override the PageNumberPagination class, and then enable your custom pagination class as above. django_paginator_class - The Django Paginator class to use. Default is django.core.paginator.Paginator , which should be fine for most usecases. page_size - A numeric value indicating the page size. If set, this overrides the PAGE_SIZE setting. Defaults to the same value as the PAGE_SIZE settings key. page_query_param - A string value indicating the name of the query parameter to use for the pagination control. page_size_query_param - If set, this is a string value indicating the name of a query parameter that allows the client to set the page size on a per-request basis. Defaults to None , indicating that the client may not control the requested page size. max_page_size - If set, this is a numeric value indicating the maximum allowable requested page size. This attribute is only valid if page_size_query_param is also set. last_page_strings - A list or tuple of string values indicating values that may be used with the page_query_param to request the final page in the set. Defaults to ('last',) template - The name of a template to use when rendering pagination controls in the browsable API. May be overridden to modify the rendering style, or set to None to disable HTML pagination controls completely. Defaults to \"rest_framework/pagination/numbers.html\" .",
"title": "PageNumberPagination"
},
{
@@ -2132,7 +2132,7 @@
},
{
"location": "/api-guide/versioning/",
- "text": "Versioning\n\n\n\n\nVersioning an interface is just a \"polite\" way to kill deployed clients.\n\n\n \nRoy Fielding\n.\n\n\n\n\nAPI versioning allows you to alter behavior between different clients. REST framework provides for a number of different versioning schemes.\n\n\nVersioning is determined by the incoming client request, and may either be based on the request URL, or based on the request headers.\n\n\nThere are a number of valid approaches to approaching versioning. \nNon-versioned systems can also be appropriate\n, particularly if you're engineering for very long-term systems with multiple clients outside of your control.\n\n\nVersioning with REST framework\n\n\nWhen API versioning is enabled, the \nrequest.version\n attribute will contain a string that corresponds to the version requested in the incoming client request.\n\n\nBy default, versioning is not enabled, and \nrequest.version\n will always return \nNone\n.\n\n\nVarying behavior based on the version\n\n\nHow you vary the API behavior is up to you, but one example you might typically want is to switch to a different serialization style in a newer version. For example:\n\n\ndef get_serializer_class(self):\n if self.request.version == 'v1':\n return AccountSerializerVersion1\n return AccountSerializer\n\n\n\nReversing URLs for versioned APIs\n\n\nThe \nreverse\n function included by REST framework ties in with the versioning scheme. You need to make sure to include the current \nrequest\n as a keyword argument, like so.\n\n\nfrom rest_framework.reverse import reverse\n\nreverse('bookings-list', request=request)\n\n\n\nThe above function will apply any URL transformations appropriate to the request version. For example:\n\n\n\n\nIf \nNamespacedVersioning\n was being used, and the API version was 'v1', then the URL lookup used would be \n'v1:bookings-list'\n, which might resolve to a URL like \nhttp://example.org/v1/bookings/\n.\n\n\nIf \nQueryParameterVersioning\n was being used, and the API version was \n1.0\n, then the returned URL might be something like \nhttp://example.org/bookings/?version=1.0\n\n\n\n\nVersioned APIs and hyperlinked serializers\n\n\nWhen using hyperlinked serialization styles together with a URL based versioning scheme make sure to include the request as context to the serializer.\n\n\ndef get(self, request):\n queryset = Booking.objects.all()\n serializer = BookingsSerializer(queryset, many=True, context={'request': request})\n return Response({'all_bookings': serializer.data})\n\n\n\nDoing so will allow any returned URLs to include the appropriate versioning.\n\n\nConfiguring the versioning scheme\n\n\nThe versioning scheme is defined by the \nDEFAULT_VERSIONING_CLASS\n settings key.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_VERSIONING_CLASS': 'rest_framework.versioning.NamespaceVersioning'\n}\n\n\n\nUnless it is explicitly set, the value for \nDEFAULT_VERSIONING_CLASS\n will be \nNone\n. In this case the \nrequest.version\n attribute will always return \nNone\n.\n\n\nYou can also set the versioning scheme on an individual view. Typically you won't need to do this, as it makes more sense to have a single versioning scheme used globally. If you do need to do so, use the \nversioning_class\n attribute.\n\n\nclass ProfileList(APIView):\n versioning_class = versioning.QueryParameterVersioning\n\n\n\nOther versioning settings\n\n\nThe following settings keys are also used to control versioning:\n\n\n\n\nDEFAULT_VERSION\n. The value that should be used for \nrequest.version\n when no versioning information is present. Defaults to \nNone\n.\n\n\nALLOWED_VERSIONS\n. If set, this value will restrict the set of versions that may be returned by the versioning scheme, and will raise an error if the provided version if not in this set. Note that the value used for the \nDEFAULT_VERSION\n setting is always considered to be part of the \nALLOWED_VERSIONS\n set. Defaults to \nNone\n.\n\n\nVERSION_PARAM\n. The string that should used for any versioning parameters, such as in the media type or URL query parameters. Defaults to \n'version'\n.\n\n\n\n\nYou can also set your versioning class plus those three values on a per-view or a per-viewset basis by defining your own versioning scheme and using the \ndefault_version\n, \nallowed_versions\n and \nversion_param\n class variables. For example, if you want to use \nURLPathVersioning\n:\n\n\nfrom rest_framework.versioning import URLPathVersioning\nfrom rest_framework.views import APIView\n\nclass ExampleVersioning(URLPathVersioning):\n default_version = ...\n allowed_versions = ...\n version_param = ...\n\nclass ExampleView(APIVIew):\n versioning_class = ExampleVersioning\n\n\n\n\n\nAPI Reference\n\n\nAcceptHeaderVersioning\n\n\nThis scheme requires the client to specify the version as part of the media type in the \nAccept\n header. The version is included as a media type parameter, that supplements the main media type.\n\n\nHere's an example HTTP request using the accept header versioning style.\n\n\nGET /bookings/ HTTP/1.1\nHost: example.com\nAccept: application/json; version=1.0\n\n\n\nIn the example request above \nrequest.version\n attribute would return the string \n'1.0'\n.\n\n\nVersioning based on accept headers is \ngenerally considered\n as \nbest practice\n, although other styles may be suitable depending on your client requirements.\n\n\nUsing accept headers with vendor media types\n\n\nStrictly speaking the \njson\n media type is not specified as \nincluding additional parameters\n. If you are building a well-specified public API you might consider using a \nvendor media type\n. To do so, configure your renderers to use a JSON based renderer with a custom media type:\n\n\nclass BookingsAPIRenderer(JSONRenderer):\n media_type = 'application/vnd.megacorp.bookings+json'\n\n\n\nYour client requests would now look like this:\n\n\nGET /bookings/ HTTP/1.1\nHost: example.com\nAccept: application/vnd.megacorp.bookings+json; version=1.0\n\n\n\nURLPathVersioning\n\n\nThis scheme requires the client to specify the version as part of the URL path.\n\n\nGET /v1/bookings/ HTTP/1.1\nHost: example.com\nAccept: application/json\n\n\n\nYour URL conf must include a pattern that matches the version with a \n'version'\n keyword argument, so that this information is available to the versioning scheme.\n\n\nurlpatterns = [\n url(\n r'^(?P\nversion\n[v1|v2]+)/bookings/$',\n bookings_list,\n name='bookings-list'\n ),\n url(\n r'^(?P\nversion\n[v1|v2]+)/bookings/(?P\npk\n[0-9]+)/$',\n bookings_detail,\n name='bookings-detail'\n )\n]\n\n\n\nNamespaceVersioning\n\n\nTo the client, this scheme is the same as \nURLParameterVersioning\n. The only difference is how it is configured in your Django application, as it uses URL namespacing, instead of URL keyword arguments.\n\n\nGET /v1/something/ HTTP/1.1\nHost: example.com\nAccept: application/json\n\n\n\nWith this scheme the \nrequest.version\n attribute is determined based on the \nnamespace\n that matches the incoming request path.\n\n\nIn the following example we're giving a set of views two different possible URL prefixes, each under a different namespace:\n\n\n# bookings/urls.py\nurlpatterns = [\n url(r'^$', bookings_list, name='bookings-list'),\n url(r'^(?P\npk\n[0-9]+)/$', bookings_detail, name='bookings-detail')\n]\n\n# urls.py\nurlpatterns = [\n url(r'^v1/bookings/', include('bookings.urls', namespace='v1')),\n url(r'^v2/bookings/', include('bookings.urls', namespace='v2'))\n]\n\n\n\nBoth \nURLParameterVersioning\n and \nNamespaceVersioning\n are reasonable if you just need a simple versioning scheme. The \nURLParameterVersioning\n approach might be better suitable for small ad-hoc projects, and the \nNamespaceVersioning\n is probably easier to manage for larger projects.\n\n\nHostNameVersioning\n\n\nThe hostname versioning scheme requires the client to specify the requested version as part of the hostname in the URL.\n\n\nFor example the following is an HTTP request to the \nhttp://v1.example.com/bookings/\n URL:\n\n\nGET /bookings/ HTTP/1.1\nHost: v1.example.com\nAccept: application/json\n\n\n\nBy default this implementation expects the hostname to match this simple regular expression:\n\n\n^([a-zA-Z0-9]+)\\.[a-zA-Z0-9]+\\.[a-zA-Z0-9]+$\n\n\n\nNote that the first group is enclosed in brackets, indicating that this is the matched portion of the hostname.\n\n\nThe \nHostNameVersioning\n scheme can be awkward to use in debug mode as you will typically be accessing a raw IP address such as \n127.0.0.1\n. There are various online services which you to \naccess localhost with a custom subdomain\n which you may find helpful in this case.\n\n\nHostname based versioning can be particularly useful if you have requirements to route incoming requests to different servers based on the version, as you can configure different DNS records for different API versions.\n\n\nQueryParameterVersioning\n\n\nThis scheme is a simple style that includes the version as a query parameter in the URL. For example:\n\n\nGET /something/?version=0.1 HTTP/1.1\nHost: example.com\nAccept: application/json\n\n\n\n\n\nCustom versioning schemes\n\n\nTo implement a custom versioning scheme, subclass \nBaseVersioning\n and override the \n.determine_version\n method.\n\n\nExample\n\n\nThe following example uses a custom \nX-API-Version\n header to determine the requested version.\n\n\nclass XAPIVersionScheme(versioning.BaseVersioning):\n def determine_version(self, request, *args, **kwargs):\n return request.META.get('HTTP_X_API_VERSION', None)\n\n\n\nIf your versioning scheme is based on the request URL, you will also want to alter how versioned URLs are determined. In order to do so you should override the \n.reverse()\n method on the class. See the source code for examples.",
+ "text": "Versioning\n\n\n\n\nVersioning an interface is just a \"polite\" way to kill deployed clients.\n\n\n \nRoy Fielding\n.\n\n\n\n\nAPI versioning allows you to alter behavior between different clients. REST framework provides for a number of different versioning schemes.\n\n\nVersioning is determined by the incoming client request, and may either be based on the request URL, or based on the request headers.\n\n\nThere are a number of valid approaches to approaching versioning. \nNon-versioned systems can also be appropriate\n, particularly if you're engineering for very long-term systems with multiple clients outside of your control.\n\n\nVersioning with REST framework\n\n\nWhen API versioning is enabled, the \nrequest.version\n attribute will contain a string that corresponds to the version requested in the incoming client request.\n\n\nBy default, versioning is not enabled, and \nrequest.version\n will always return \nNone\n.\n\n\nVarying behavior based on the version\n\n\nHow you vary the API behavior is up to you, but one example you might typically want is to switch to a different serialization style in a newer version. For example:\n\n\ndef get_serializer_class(self):\n if self.request.version == 'v1':\n return AccountSerializerVersion1\n return AccountSerializer\n\n\n\nReversing URLs for versioned APIs\n\n\nThe \nreverse\n function included by REST framework ties in with the versioning scheme. You need to make sure to include the current \nrequest\n as a keyword argument, like so.\n\n\nfrom rest_framework.reverse import reverse\n\nreverse('bookings-list', request=request)\n\n\n\nThe above function will apply any URL transformations appropriate to the request version. For example:\n\n\n\n\nIf \nNamespacedVersioning\n was being used, and the API version was 'v1', then the URL lookup used would be \n'v1:bookings-list'\n, which might resolve to a URL like \nhttp://example.org/v1/bookings/\n.\n\n\nIf \nQueryParameterVersioning\n was being used, and the API version was \n1.0\n, then the returned URL might be something like \nhttp://example.org/bookings/?version=1.0\n\n\n\n\nVersioned APIs and hyperlinked serializers\n\n\nWhen using hyperlinked serialization styles together with a URL based versioning scheme make sure to include the request as context to the serializer.\n\n\ndef get(self, request):\n queryset = Booking.objects.all()\n serializer = BookingsSerializer(queryset, many=True, context={'request': request})\n return Response({'all_bookings': serializer.data})\n\n\n\nDoing so will allow any returned URLs to include the appropriate versioning.\n\n\nConfiguring the versioning scheme\n\n\nThe versioning scheme is defined by the \nDEFAULT_VERSIONING_CLASS\n settings key.\n\n\nREST_FRAMEWORK = {\n 'DEFAULT_VERSIONING_CLASS': 'rest_framework.versioning.NamespaceVersioning'\n}\n\n\n\nUnless it is explicitly set, the value for \nDEFAULT_VERSIONING_CLASS\n will be \nNone\n. In this case the \nrequest.version\n attribute will always return \nNone\n.\n\n\nYou can also set the versioning scheme on an individual view. Typically you won't need to do this, as it makes more sense to have a single versioning scheme used globally. If you do need to do so, use the \nversioning_class\n attribute.\n\n\nclass ProfileList(APIView):\n versioning_class = versioning.QueryParameterVersioning\n\n\n\nOther versioning settings\n\n\nThe following settings keys are also used to control versioning:\n\n\n\n\nDEFAULT_VERSION\n. The value that should be used for \nrequest.version\n when no versioning information is present. Defaults to \nNone\n.\n\n\nALLOWED_VERSIONS\n. If set, this value will restrict the set of versions that may be returned by the versioning scheme, and will raise an error if the provided version if not in this set. Note that the value used for the \nDEFAULT_VERSION\n setting is always considered to be part of the \nALLOWED_VERSIONS\n set. Defaults to \nNone\n.\n\n\nVERSION_PARAM\n. The string that should used for any versioning parameters, such as in the media type or URL query parameters. Defaults to \n'version'\n.\n\n\n\n\nYou can also set your versioning class plus those three values on a per-view or a per-viewset basis by defining your own versioning scheme and using the \ndefault_version\n, \nallowed_versions\n and \nversion_param\n class variables. For example, if you want to use \nURLPathVersioning\n:\n\n\nfrom rest_framework.versioning import URLPathVersioning\nfrom rest_framework.views import APIView\n\nclass ExampleVersioning(URLPathVersioning):\n default_version = ...\n allowed_versions = ...\n version_param = ...\n\nclass ExampleView(APIVIew):\n versioning_class = ExampleVersioning\n\n\n\n\n\nAPI Reference\n\n\nAcceptHeaderVersioning\n\n\nThis scheme requires the client to specify the version as part of the media type in the \nAccept\n header. The version is included as a media type parameter, that supplements the main media type.\n\n\nHere's an example HTTP request using the accept header versioning style.\n\n\nGET /bookings/ HTTP/1.1\nHost: example.com\nAccept: application/json; version=1.0\n\n\n\nIn the example request above \nrequest.version\n attribute would return the string \n'1.0'\n.\n\n\nVersioning based on accept headers is \ngenerally considered\n as \nbest practice\n, although other styles may be suitable depending on your client requirements.\n\n\nUsing accept headers with vendor media types\n\n\nStrictly speaking the \njson\n media type is not specified as \nincluding additional parameters\n. If you are building a well-specified public API you might consider using a \nvendor media type\n. To do so, configure your renderers to use a JSON based renderer with a custom media type:\n\n\nclass BookingsAPIRenderer(JSONRenderer):\n media_type = 'application/vnd.megacorp.bookings+json'\n\n\n\nYour client requests would now look like this:\n\n\nGET /bookings/ HTTP/1.1\nHost: example.com\nAccept: application/vnd.megacorp.bookings+json; version=1.0\n\n\n\nURLPathVersioning\n\n\nThis scheme requires the client to specify the version as part of the URL path.\n\n\nGET /v1/bookings/ HTTP/1.1\nHost: example.com\nAccept: application/json\n\n\n\nYour URL conf must include a pattern that matches the version with a \n'version'\n keyword argument, so that this information is available to the versioning scheme.\n\n\nurlpatterns = [\n url(\n r'^(?P\nversion\n(v1|v2))/bookings/$',\n bookings_list,\n name='bookings-list'\n ),\n url(\n r'^(?P\nversion\n(v1|v2))/bookings/(?P\npk\n[0-9]+)/$',\n bookings_detail,\n name='bookings-detail'\n )\n]\n\n\n\nNamespaceVersioning\n\n\nTo the client, this scheme is the same as \nURLParameterVersioning\n. The only difference is how it is configured in your Django application, as it uses URL namespacing, instead of URL keyword arguments.\n\n\nGET /v1/something/ HTTP/1.1\nHost: example.com\nAccept: application/json\n\n\n\nWith this scheme the \nrequest.version\n attribute is determined based on the \nnamespace\n that matches the incoming request path.\n\n\nIn the following example we're giving a set of views two different possible URL prefixes, each under a different namespace:\n\n\n# bookings/urls.py\nurlpatterns = [\n url(r'^$', bookings_list, name='bookings-list'),\n url(r'^(?P\npk\n[0-9]+)/$', bookings_detail, name='bookings-detail')\n]\n\n# urls.py\nurlpatterns = [\n url(r'^v1/bookings/', include('bookings.urls', namespace='v1')),\n url(r'^v2/bookings/', include('bookings.urls', namespace='v2'))\n]\n\n\n\nBoth \nURLParameterVersioning\n and \nNamespaceVersioning\n are reasonable if you just need a simple versioning scheme. The \nURLParameterVersioning\n approach might be better suitable for small ad-hoc projects, and the \nNamespaceVersioning\n is probably easier to manage for larger projects.\n\n\nHostNameVersioning\n\n\nThe hostname versioning scheme requires the client to specify the requested version as part of the hostname in the URL.\n\n\nFor example the following is an HTTP request to the \nhttp://v1.example.com/bookings/\n URL:\n\n\nGET /bookings/ HTTP/1.1\nHost: v1.example.com\nAccept: application/json\n\n\n\nBy default this implementation expects the hostname to match this simple regular expression:\n\n\n^([a-zA-Z0-9]+)\\.[a-zA-Z0-9]+\\.[a-zA-Z0-9]+$\n\n\n\nNote that the first group is enclosed in brackets, indicating that this is the matched portion of the hostname.\n\n\nThe \nHostNameVersioning\n scheme can be awkward to use in debug mode as you will typically be accessing a raw IP address such as \n127.0.0.1\n. There are various online services which you to \naccess localhost with a custom subdomain\n which you may find helpful in this case.\n\n\nHostname based versioning can be particularly useful if you have requirements to route incoming requests to different servers based on the version, as you can configure different DNS records for different API versions.\n\n\nQueryParameterVersioning\n\n\nThis scheme is a simple style that includes the version as a query parameter in the URL. For example:\n\n\nGET /something/?version=0.1 HTTP/1.1\nHost: example.com\nAccept: application/json\n\n\n\n\n\nCustom versioning schemes\n\n\nTo implement a custom versioning scheme, subclass \nBaseVersioning\n and override the \n.determine_version\n method.\n\n\nExample\n\n\nThe following example uses a custom \nX-API-Version\n header to determine the requested version.\n\n\nclass XAPIVersionScheme(versioning.BaseVersioning):\n def determine_version(self, request, *args, **kwargs):\n return request.META.get('HTTP_X_API_VERSION', None)\n\n\n\nIf your versioning scheme is based on the request URL, you will also want to alter how versioned URLs are determined. In order to do so you should override the \n.reverse()\n method on the class. See the source code for examples.",
"title": "Versioning"
},
{
@@ -2162,7 +2162,7 @@
},
{
"location": "/api-guide/versioning/#urlpathversioning",
- "text": "This scheme requires the client to specify the version as part of the URL path. GET /v1/bookings/ HTTP/1.1\nHost: example.com\nAccept: application/json Your URL conf must include a pattern that matches the version with a 'version' keyword argument, so that this information is available to the versioning scheme. urlpatterns = [\n url(\n r'^(?P version [v1|v2]+)/bookings/$',\n bookings_list,\n name='bookings-list'\n ),\n url(\n r'^(?P version [v1|v2]+)/bookings/(?P pk [0-9]+)/$',\n bookings_detail,\n name='bookings-detail'\n )\n]",
+ "text": "This scheme requires the client to specify the version as part of the URL path. GET /v1/bookings/ HTTP/1.1\nHost: example.com\nAccept: application/json Your URL conf must include a pattern that matches the version with a 'version' keyword argument, so that this information is available to the versioning scheme. urlpatterns = [\n url(\n r'^(?P version (v1|v2))/bookings/$',\n bookings_list,\n name='bookings-list'\n ),\n url(\n r'^(?P version (v1|v2))/bookings/(?P pk [0-9]+)/$',\n bookings_detail,\n name='bookings-detail'\n )\n]",
"title": "URLPathVersioning"
},
{
@@ -2652,7 +2652,7 @@
},
{
"location": "/topics/html-and-forms/",
- "text": "HTML \n Forms\n\n\nREST framework is suitable for returning both API style responses, and regular HTML pages. Additionally, serializers can used as HTML forms and rendered in templates.\n\n\nRendering HTML\n\n\nIn order to return HTML responses you'll need to either \nTemplateHTMLRenderer\n, or \nStaticHTMLRenderer\n.\n\n\nThe \nTemplateHTMLRenderer\n class expects the response to contain a dictionary of context data, and renders an HTML page based on a template that must be specified either in the view or on the response.\n\n\nThe \nStaticHTMLRender\n class expects the response to contain a string of the pre-rendered HTML content.\n\n\nBecause static HTML pages typically have different behavior from API responses you'll probably need to write any HTML views explicitly, rather than relying on the built-in generic views.\n\n\nHere's an example of a view that returns a list of \"Profile\" instances, rendered in an HTML template:\n\n\nviews.py\n:\n\n\nfrom my_project.example.models import Profile\nfrom rest_framework.renderers import TemplateHTMLRenderer\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\n\nclass ProfileList(APIView):\n renderer_classes = [TemplateHTMLRenderer]\n template_name = 'profile_list.html'\n\n def get(self, request):\n queryset = Profile.objects.all()\n return Response({'profiles': queryset})\n\n\n\nprofile_list.html\n:\n\n\nhtml\nbody\n\n\nh1\nProfiles\n/h1\n\n\nul\n\n {% for profile in profiles %}\n \nli\n{{ profile.name }}\n/li\n\n {% endfor %}\n\n/ul\n\n\n/body\n/html\n\n\n\n\nRendering Forms\n\n\nSerializers may be rendered as forms by using the \nrender_form\n template tag, and including the serializer instance as context to the template.\n\n\nThe following view demonstrates an example of using a serializer in a template for viewing and updating a model instance:\n\n\nviews.py\n:\n\n\nfrom django.shortcuts import get_object_or_404\nfrom my_project.example.models import Profile\nfrom rest_framework.renderers import TemplateHTMLRenderer\nfrom rest_framework.views import APIView\n\n\nclass ProfileDetail(APIView):\n renderer_classes = [TemplateHTMLRenderer]\n template_name = 'profile_detail.html'\n\n def get(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n return Response({'serializer': serializer, 'profile': profile})\n\n def post(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n if not serializer.is_valid():\n return Response({'serializer': serializer, 'profile': profile})\n return redirect('profile-list')\n\n\n\nprofile_detail.html\n:\n\n\n{% load rest_framework %}\n\n\nhtml\nbody\n\n\n\nh1\nProfile - {{ profile.name }}\n/h1\n\n\n\nform action=\"{% url 'profile-detail' pk=profile.pk '%}\" method=\"POST\"\n\n {% csrf_token %}\n {% render_form serializer %}\n \ninput type=\"submit\" value=\"Save\"\n\n\n/form\n\n\n\n/body\n/html\n\n\n\n\nUsing template packs\n\n\nThe \nrender_form\n tag takes an optional \ntemplate_pack\n argument, that specifies which template directory should be used for rendering the form and form fields.\n\n\nREST framework includes three built-in template packs, all based on Bootstrap 3. The built-in styles are \nhorizontal\n, \nvertical\n, and \ninline\n. The default style is \nhorizontal\n. To use any of these template packs you'll want to also include the Bootstrap 3 CSS.\n\n\nThe following HTML will link to a CDN hosted version of the Bootstrap 3 CSS:\n\n\nhead\n\n \u2026\n \nlink rel=\"stylesheet\" href=\"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css\"\n\n\n/head\n\n\n\n\nThird party packages may include alternate template packs, by bundling a template directory containing the necessary form and field templates.\n\n\nLet's take a look at how to render each of the three available template packs. For these examples we'll use a single serializer class to present a \"Login\" form.\n\n\nclass LoginSerializer(serializers.Serializer):\n email = serializers.EmailField(\n max_length=100,\n style={'placeholder': 'Email'}\n )\n password = serializers.CharField(\n max_length=100,\n style={'input_type': 'password', 'placeholder': 'Password'}\n )\n remember_me = serializers.BooleanField()\n\n\n\n\n\nrest_framework/vertical\n\n\nPresents form labels above their corresponding control inputs, using the standard Bootstrap layout.\n\n\nThis is the default template pack.\n\n\n{% load rest_framework %}\n\n...\n\n\nform action=\"{% url 'login' %}\" method=\"post\" novalidate\n\n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/vertical' %}\n \nbutton type=\"submit\" class=\"btn btn-default\"\nSign in\n/button\n\n\n/form\n\n\n\n\n\n\n\n\nrest_framework/horizontal\n\n\nPresents labels and controls alongside each other, using a 2/10 column split.\n\n\nThis is the form style used in the browsable API and admin renderers.\n\n\n{% load rest_framework %}\n\n...\n\n\nform class=\"form-horizontal\" action=\"{% url 'login' %}\" method=\"post\" novalidate\n\n {% csrf_token %}\n {% render_form serializer %}\n \ndiv class=\"form-group\"\n\n \ndiv class=\"col-sm-offset-2 col-sm-10\"\n\n \nbutton type=\"submit\" class=\"btn btn-default\"\nSign in\n/button\n\n \n/div\n\n \n/div\n\n\n/form\n\n\n\n\n\n\n\n\nrest_framework/inline\n\n\nA compact form style that presents all the controls inline.\n\n\n{% load rest_framework %}\n\n...\n\n\nform class=\"form-inline\" action=\"{% url 'login' %}\" method=\"post\" novalidate\n\n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/inline' %}\n \nbutton type=\"submit\" class=\"btn btn-default\"\nSign in\n/button\n\n\n/form\n\n\n\n\n\n\nField styles\n\n\nSerializer fields can have their rendering style customized by using the \nstyle\n keyword argument. This argument is a dictionary of options that control the template and layout used.\n\n\nThe most common way to customize the field style is to use the \nbase_template\n style keyword argument to select which template in the template pack should be use.\n\n\nFor example, to render a \nCharField\n as an HTML textarea rather than the default HTML input, you would use something like this:\n\n\ndetails = serializers.CharField(\n max_length=1000,\n style={'base_template': 'textarea.html'}\n)\n\n\n\nIf you instead want a field to be rendered using a custom template that is \nnot part of an included template pack\n, you can instead use the \ntemplate\n style option, to fully specify a template name:\n\n\ndetails = serializers.CharField(\n max_length=1000,\n style={'template': 'my-field-templates/custom-input.html'}\n)\n\n\n\nField templates can also use additional style properties, depending on their type. For example, the \ntextarea.html\n template also accepts a \nrows\n property that can be used to affect the sizing of the control.\n\n\ndetails = serializers.CharField(\n max_length=1000,\n style={'base_template': 'textarea.html', 'rows': 10}\n)\n\n\n\nThe complete list of \nbase_template\n options and their associated style options is listed below.\n\n\n\n\n\n\n\n\nbase_template\n\n\nValid field types\n\n\nAdditional style options\n\n\n\n\n\n\n\n\n\n\ninput.html\n\n\nAny string, numeric or date/time field\n\n\ninput_type, placeholder, hide_label\n\n\n\n\n\n\ntextarea.html\n\n\nCharField\n\n\nrows, placeholder, hide_label\n\n\n\n\n\n\nselect.html\n\n\nChoiceField\n or relational field types\n\n\nhide_label\n\n\n\n\n\n\nradio.html\n\n\nChoiceField\n or relational field types\n\n\ninline, hide_label\n\n\n\n\n\n\nselect_multiple.html\n\n\nMultipleChoiceField\n or relational fields with \nmany=True\n\n\nhide_label\n\n\n\n\n\n\ncheckbox_multiple.html\n\n\nMultipleChoiceField\n or relational fields with \nmany=True\n\n\ninline, hide_label\n\n\n\n\n\n\ncheckbox.html\n\n\nBooleanField\n\n\nhide_label\n\n\n\n\n\n\nfieldset.html\n\n\nNested serializer\n\n\nhide_label\n\n\n\n\n\n\nlist_fieldset.html\n\n\nListField\n or nested serializer with \nmany=True\n\n\nhide_label",
+ "text": "HTML \n Forms\n\n\nREST framework is suitable for returning both API style responses, and regular HTML pages. Additionally, serializers can used as HTML forms and rendered in templates.\n\n\nRendering HTML\n\n\nIn order to return HTML responses you'll need to either \nTemplateHTMLRenderer\n, or \nStaticHTMLRenderer\n.\n\n\nThe \nTemplateHTMLRenderer\n class expects the response to contain a dictionary of context data, and renders an HTML page based on a template that must be specified either in the view or on the response.\n\n\nThe \nStaticHTMLRender\n class expects the response to contain a string of the pre-rendered HTML content.\n\n\nBecause static HTML pages typically have different behavior from API responses you'll probably need to write any HTML views explicitly, rather than relying on the built-in generic views.\n\n\nHere's an example of a view that returns a list of \"Profile\" instances, rendered in an HTML template:\n\n\nviews.py\n:\n\n\nfrom my_project.example.models import Profile\nfrom rest_framework.renderers import TemplateHTMLRenderer\nfrom rest_framework.response import Response\nfrom rest_framework.views import APIView\n\n\nclass ProfileList(APIView):\n renderer_classes = [TemplateHTMLRenderer]\n template_name = 'profile_list.html'\n\n def get(self, request):\n queryset = Profile.objects.all()\n return Response({'profiles': queryset})\n\n\n\nprofile_list.html\n:\n\n\nhtml\nbody\n\n\nh1\nProfiles\n/h1\n\n\nul\n\n {% for profile in profiles %}\n \nli\n{{ profile.name }}\n/li\n\n {% endfor %}\n\n/ul\n\n\n/body\n/html\n\n\n\n\nRendering Forms\n\n\nSerializers may be rendered as forms by using the \nrender_form\n template tag, and including the serializer instance as context to the template.\n\n\nThe following view demonstrates an example of using a serializer in a template for viewing and updating a model instance:\n\n\nviews.py\n:\n\n\nfrom django.shortcuts import get_object_or_404\nfrom my_project.example.models import Profile\nfrom rest_framework.renderers import TemplateHTMLRenderer\nfrom rest_framework.views import APIView\n\n\nclass ProfileDetail(APIView):\n renderer_classes = [TemplateHTMLRenderer]\n template_name = 'profile_detail.html'\n\n def get(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n return Response({'serializer': serializer, 'profile': profile})\n\n def post(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n if not serializer.is_valid():\n return Response({'serializer': serializer, 'profile': profile})\n return redirect('profile-list')\n\n\n\nprofile_detail.html\n:\n\n\n{% load rest_framework %}\n\n\nhtml\nbody\n\n\n\nh1\nProfile - {{ profile.name }}\n/h1\n\n\n\nform action=\"{% url 'profile-detail' pk=profile.pk %}\" method=\"POST\"\n\n {% csrf_token %}\n {% render_form serializer %}\n \ninput type=\"submit\" value=\"Save\"\n\n\n/form\n\n\n\n/body\n/html\n\n\n\n\nUsing template packs\n\n\nThe \nrender_form\n tag takes an optional \ntemplate_pack\n argument, that specifies which template directory should be used for rendering the form and form fields.\n\n\nREST framework includes three built-in template packs, all based on Bootstrap 3. The built-in styles are \nhorizontal\n, \nvertical\n, and \ninline\n. The default style is \nhorizontal\n. To use any of these template packs you'll want to also include the Bootstrap 3 CSS.\n\n\nThe following HTML will link to a CDN hosted version of the Bootstrap 3 CSS:\n\n\nhead\n\n \u2026\n \nlink rel=\"stylesheet\" href=\"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css\"\n\n\n/head\n\n\n\n\nThird party packages may include alternate template packs, by bundling a template directory containing the necessary form and field templates.\n\n\nLet's take a look at how to render each of the three available template packs. For these examples we'll use a single serializer class to present a \"Login\" form.\n\n\nclass LoginSerializer(serializers.Serializer):\n email = serializers.EmailField(\n max_length=100,\n style={'placeholder': 'Email'}\n )\n password = serializers.CharField(\n max_length=100,\n style={'input_type': 'password', 'placeholder': 'Password'}\n )\n remember_me = serializers.BooleanField()\n\n\n\n\n\nrest_framework/vertical\n\n\nPresents form labels above their corresponding control inputs, using the standard Bootstrap layout.\n\n\nThis is the default template pack.\n\n\n{% load rest_framework %}\n\n...\n\n\nform action=\"{% url 'login' %}\" method=\"post\" novalidate\n\n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/vertical' %}\n \nbutton type=\"submit\" class=\"btn btn-default\"\nSign in\n/button\n\n\n/form\n\n\n\n\n\n\n\n\nrest_framework/horizontal\n\n\nPresents labels and controls alongside each other, using a 2/10 column split.\n\n\nThis is the form style used in the browsable API and admin renderers.\n\n\n{% load rest_framework %}\n\n...\n\n\nform class=\"form-horizontal\" action=\"{% url 'login' %}\" method=\"post\" novalidate\n\n {% csrf_token %}\n {% render_form serializer %}\n \ndiv class=\"form-group\"\n\n \ndiv class=\"col-sm-offset-2 col-sm-10\"\n\n \nbutton type=\"submit\" class=\"btn btn-default\"\nSign in\n/button\n\n \n/div\n\n \n/div\n\n\n/form\n\n\n\n\n\n\n\n\nrest_framework/inline\n\n\nA compact form style that presents all the controls inline.\n\n\n{% load rest_framework %}\n\n...\n\n\nform class=\"form-inline\" action=\"{% url 'login' %}\" method=\"post\" novalidate\n\n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/inline' %}\n \nbutton type=\"submit\" class=\"btn btn-default\"\nSign in\n/button\n\n\n/form\n\n\n\n\n\n\nField styles\n\n\nSerializer fields can have their rendering style customized by using the \nstyle\n keyword argument. This argument is a dictionary of options that control the template and layout used.\n\n\nThe most common way to customize the field style is to use the \nbase_template\n style keyword argument to select which template in the template pack should be use.\n\n\nFor example, to render a \nCharField\n as an HTML textarea rather than the default HTML input, you would use something like this:\n\n\ndetails = serializers.CharField(\n max_length=1000,\n style={'base_template': 'textarea.html'}\n)\n\n\n\nIf you instead want a field to be rendered using a custom template that is \nnot part of an included template pack\n, you can instead use the \ntemplate\n style option, to fully specify a template name:\n\n\ndetails = serializers.CharField(\n max_length=1000,\n style={'template': 'my-field-templates/custom-input.html'}\n)\n\n\n\nField templates can also use additional style properties, depending on their type. For example, the \ntextarea.html\n template also accepts a \nrows\n property that can be used to affect the sizing of the control.\n\n\ndetails = serializers.CharField(\n max_length=1000,\n style={'base_template': 'textarea.html', 'rows': 10}\n)\n\n\n\nThe complete list of \nbase_template\n options and their associated style options is listed below.\n\n\n\n\n\n\n\n\nbase_template\n\n\nValid field types\n\n\nAdditional style options\n\n\n\n\n\n\n\n\n\n\ninput.html\n\n\nAny string, numeric or date/time field\n\n\ninput_type, placeholder, hide_label\n\n\n\n\n\n\ntextarea.html\n\n\nCharField\n\n\nrows, placeholder, hide_label\n\n\n\n\n\n\nselect.html\n\n\nChoiceField\n or relational field types\n\n\nhide_label\n\n\n\n\n\n\nradio.html\n\n\nChoiceField\n or relational field types\n\n\ninline, hide_label\n\n\n\n\n\n\nselect_multiple.html\n\n\nMultipleChoiceField\n or relational fields with \nmany=True\n\n\nhide_label\n\n\n\n\n\n\ncheckbox_multiple.html\n\n\nMultipleChoiceField\n or relational fields with \nmany=True\n\n\ninline, hide_label\n\n\n\n\n\n\ncheckbox.html\n\n\nBooleanField\n\n\nhide_label\n\n\n\n\n\n\nfieldset.html\n\n\nNested serializer\n\n\nhide_label\n\n\n\n\n\n\nlist_fieldset.html\n\n\nListField\n or nested serializer with \nmany=True\n\n\nhide_label",
"title": "HTML & Forms"
},
{
@@ -2667,7 +2667,7 @@
},
{
"location": "/topics/html-and-forms/#rendering-forms",
- "text": "Serializers may be rendered as forms by using the render_form template tag, and including the serializer instance as context to the template. The following view demonstrates an example of using a serializer in a template for viewing and updating a model instance: views.py : from django.shortcuts import get_object_or_404\nfrom my_project.example.models import Profile\nfrom rest_framework.renderers import TemplateHTMLRenderer\nfrom rest_framework.views import APIView\n\n\nclass ProfileDetail(APIView):\n renderer_classes = [TemplateHTMLRenderer]\n template_name = 'profile_detail.html'\n\n def get(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n return Response({'serializer': serializer, 'profile': profile})\n\n def post(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n if not serializer.is_valid():\n return Response({'serializer': serializer, 'profile': profile})\n return redirect('profile-list') profile_detail.html : {% load rest_framework %} html body h1 Profile - {{ profile.name }} /h1 form action=\"{% url 'profile-detail' pk=profile.pk '%}\" method=\"POST\" \n {% csrf_token %}\n {% render_form serializer %}\n input type=\"submit\" value=\"Save\" /form /body /html Using template packs The render_form tag takes an optional template_pack argument, that specifies which template directory should be used for rendering the form and form fields. REST framework includes three built-in template packs, all based on Bootstrap 3. The built-in styles are horizontal , vertical , and inline . The default style is horizontal . To use any of these template packs you'll want to also include the Bootstrap 3 CSS. The following HTML will link to a CDN hosted version of the Bootstrap 3 CSS: head \n \u2026\n link rel=\"stylesheet\" href=\"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css\" /head Third party packages may include alternate template packs, by bundling a template directory containing the necessary form and field templates. Let's take a look at how to render each of the three available template packs. For these examples we'll use a single serializer class to present a \"Login\" form. class LoginSerializer(serializers.Serializer):\n email = serializers.EmailField(\n max_length=100,\n style={'placeholder': 'Email'}\n )\n password = serializers.CharField(\n max_length=100,\n style={'input_type': 'password', 'placeholder': 'Password'}\n )\n remember_me = serializers.BooleanField() rest_framework/vertical Presents form labels above their corresponding control inputs, using the standard Bootstrap layout. This is the default template pack. {% load rest_framework %}\n\n... form action=\"{% url 'login' %}\" method=\"post\" novalidate \n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/vertical' %}\n button type=\"submit\" class=\"btn btn-default\" Sign in /button /form rest_framework/horizontal Presents labels and controls alongside each other, using a 2/10 column split. This is the form style used in the browsable API and admin renderers. {% load rest_framework %}\n\n... form class=\"form-horizontal\" action=\"{% url 'login' %}\" method=\"post\" novalidate \n {% csrf_token %}\n {% render_form serializer %}\n div class=\"form-group\" \n div class=\"col-sm-offset-2 col-sm-10\" \n button type=\"submit\" class=\"btn btn-default\" Sign in /button \n /div \n /div /form rest_framework/inline A compact form style that presents all the controls inline. {% load rest_framework %}\n\n... form class=\"form-inline\" action=\"{% url 'login' %}\" method=\"post\" novalidate \n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/inline' %}\n button type=\"submit\" class=\"btn btn-default\" Sign in /button /form",
+ "text": "Serializers may be rendered as forms by using the render_form template tag, and including the serializer instance as context to the template. The following view demonstrates an example of using a serializer in a template for viewing and updating a model instance: views.py : from django.shortcuts import get_object_or_404\nfrom my_project.example.models import Profile\nfrom rest_framework.renderers import TemplateHTMLRenderer\nfrom rest_framework.views import APIView\n\n\nclass ProfileDetail(APIView):\n renderer_classes = [TemplateHTMLRenderer]\n template_name = 'profile_detail.html'\n\n def get(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n return Response({'serializer': serializer, 'profile': profile})\n\n def post(self, request, pk):\n profile = get_object_or_404(Profile, pk=pk)\n serializer = ProfileSerializer(profile)\n if not serializer.is_valid():\n return Response({'serializer': serializer, 'profile': profile})\n return redirect('profile-list') profile_detail.html : {% load rest_framework %} html body h1 Profile - {{ profile.name }} /h1 form action=\"{% url 'profile-detail' pk=profile.pk %}\" method=\"POST\" \n {% csrf_token %}\n {% render_form serializer %}\n input type=\"submit\" value=\"Save\" /form /body /html Using template packs The render_form tag takes an optional template_pack argument, that specifies which template directory should be used for rendering the form and form fields. REST framework includes three built-in template packs, all based on Bootstrap 3. The built-in styles are horizontal , vertical , and inline . The default style is horizontal . To use any of these template packs you'll want to also include the Bootstrap 3 CSS. The following HTML will link to a CDN hosted version of the Bootstrap 3 CSS: head \n \u2026\n link rel=\"stylesheet\" href=\"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css\" /head Third party packages may include alternate template packs, by bundling a template directory containing the necessary form and field templates. Let's take a look at how to render each of the three available template packs. For these examples we'll use a single serializer class to present a \"Login\" form. class LoginSerializer(serializers.Serializer):\n email = serializers.EmailField(\n max_length=100,\n style={'placeholder': 'Email'}\n )\n password = serializers.CharField(\n max_length=100,\n style={'input_type': 'password', 'placeholder': 'Password'}\n )\n remember_me = serializers.BooleanField() rest_framework/vertical Presents form labels above their corresponding control inputs, using the standard Bootstrap layout. This is the default template pack. {% load rest_framework %}\n\n... form action=\"{% url 'login' %}\" method=\"post\" novalidate \n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/vertical' %}\n button type=\"submit\" class=\"btn btn-default\" Sign in /button /form rest_framework/horizontal Presents labels and controls alongside each other, using a 2/10 column split. This is the form style used in the browsable API and admin renderers. {% load rest_framework %}\n\n... form class=\"form-horizontal\" action=\"{% url 'login' %}\" method=\"post\" novalidate \n {% csrf_token %}\n {% render_form serializer %}\n div class=\"form-group\" \n div class=\"col-sm-offset-2 col-sm-10\" \n button type=\"submit\" class=\"btn btn-default\" Sign in /button \n /div \n /div /form rest_framework/inline A compact form style that presents all the controls inline. {% load rest_framework %}\n\n... form class=\"form-inline\" action=\"{% url 'login' %}\" method=\"post\" novalidate \n {% csrf_token %}\n {% render_form serializer template_pack='rest_framework/inline' %}\n button type=\"submit\" class=\"btn btn-default\" Sign in /button /form",
"title": "Rendering Forms"
},
{
@@ -2902,7 +2902,7 @@
},
{
"location": "/topics/3.0-announcement/",
- "text": "Django REST framework 3.0\n\n\nThe 3.0 release of Django REST framework is the result of almost four years of iteration and refinement. It comprehensively addresses some of the previous remaining design issues in serializers, fields and the generic views.\n\n\nThis release is incremental in nature. There \nare\n some breaking API changes, and upgrading \nwill\n require you to read the release notes carefully, but the migration path should otherwise be relatively straightforward.\n\n\nThe difference in quality of the REST framework API and implementation should make writing, maintaining and debugging your application far easier.\n\n\n3.0 is the first of three releases that have been funded by our recent \nKickstarter campaign\n.\n\n\nAs ever, a huge thank you to our many \nwonderful sponsors\n. If you're looking for a Django gig, and want to work with smart community-minded folks, you should probably check out that list and see who's hiring.\n\n\n\n\nNew features\n\n\nNotable features of this new release include:\n\n\n\n\nPrintable representations on serializers that allow you to inspect exactly what fields are present on the instance.\n\n\nSimple model serializers that are vastly easier to understand and debug, and that make it easy to switch between the implicit \nModelSerializer\n class and the explicit \nSerializer\n class.\n\n\nA new \nBaseSerializer\n class, making it easier to write serializers for alternative storage backends, or to completely customize your serialization and validation logic.\n\n\nA cleaner fields API including new classes such as \nListField\n and \nMultipleChoiceField\n.\n\n\nSuper simple default implementations\n for the generic views.\n\n\nSupport for overriding how validation errors are handled by your API.\n\n\nA metadata API that allows you to customize how \nOPTIONS\n requests are handled by your API.\n\n\nA more compact JSON output with unicode style encoding turned on by default.\n\n\nTemplated based HTML form rendering for serializers. This will be finalized as public API in the upcoming 3.1 release.\n\n\n\n\nSignificant new functionality continues to be planned for the 3.1 and 3.2 releases. These releases will correspond to the two \nKickstarter stretch goals\n - \"Feature improvements\" and \"Admin interface\". Further 3.x releases will present simple upgrades, without the same level of fundamental API changes necessary for the 3.0 release.\n\n\n\n\nREST framework: Under the hood.\n\n\nThis talk from the \nDjango: Under the Hood\n event in Amsterdam, Nov 2014, gives some good background context on the design decisions behind 3.0.\n\n\n\n\n\n\n\nBelow is an in-depth guide to the API changes and migration notes for 3.0.\n\n\nRequest objects\n\n\nThe \n.data\n and \n.query_params\n properties.\n\n\nThe usage of \nrequest.DATA\n and \nrequest.FILES\n is now pending deprecation in favor of a single \nrequest.data\n attribute that contains \nall\n the parsed data.\n\n\nHaving separate attributes is reasonable for web applications that only ever parse url-encoded or multipart requests, but makes less sense for the general-purpose request parsing that REST framework supports.\n\n\nYou may now pass all the request data to a serializer class in a single argument:\n\n\n# Do this...\nExampleSerializer(data=request.data)\n\n\n\nInstead of passing the files argument separately:\n\n\n# Don't do this...\nExampleSerializer(data=request.DATA, files=request.FILES)\n\n\n\nThe usage of \nrequest.QUERY_PARAMS\n is now pending deprecation in favor of the lowercased \nrequest.query_params\n.\n\n\n\n\nSerializers\n\n\nSingle-step object creation.\n\n\nPreviously the serializers used a two-step object creation, as follows:\n\n\n\n\nValidating the data would create an object instance. This instance would be available as \nserializer.object\n.\n\n\nCalling \nserializer.save()\n would then save the object instance to the database.\n\n\n\n\nThis style is in-line with how the \nModelForm\n class works in Django, but is problematic for a number of reasons:\n\n\n\n\nSome data, such as many-to-many relationships, cannot be added to the object instance until after it has been saved. This type of data needed to be hidden in some undocumented state on the object instance, or kept as state on the serializer instance so that it could be used when \n.save()\n is called.\n\n\nInstantiating model instances directly means that you cannot use model manager classes for instance creation, e.g. \nExampleModel.objects.create(...)\n. Manager classes are an excellent layer at which to enforce business logic and application-level data constraints.\n\n\nThe two step process makes it unclear where to put deserialization logic. For example, should extra attributes such as the current user get added to the instance during object creation or during object save?\n\n\n\n\nWe now use single-step object creation, like so:\n\n\n\n\nValidating the data makes the cleaned data available as \nserializer.validated_data\n.\n\n\nCalling \nserializer.save()\n then saves and returns the new object instance.\n\n\n\n\nThe resulting API changes are further detailed below.\n\n\nThe \n.create()\n and \n.update()\n methods.\n\n\nThe \n.restore_object()\n method is now removed, and we instead have two separate methods, \n.create()\n and \n.update()\n. These methods work slightly different to the previous \n.restore_object()\n.\n\n\nWhen using the \n.create()\n and \n.update()\n methods you should both create \nand save\n the object instance. This is in contrast to the previous \n.restore_object()\n behavior that would instantiate the object but not save it.\n\n\nThese methods also replace the optional \n.save_object()\n method, which no longer exists.\n\n\nThe following example from the tutorial previously used \nrestore_object()\n to handle both creating and updating object instances.\n\n\ndef restore_object(self, attrs, instance=None):\n if instance:\n # Update existing instance\n instance.title = attrs.get('title', instance.title)\n instance.code = attrs.get('code', instance.code)\n instance.linenos = attrs.get('linenos', instance.linenos)\n instance.language = attrs.get('language', instance.language)\n instance.style = attrs.get('style', instance.style)\n return instance\n\n # Create new instance\n return Snippet(**attrs)\n\n\n\nThis would now be split out into two separate methods.\n\n\ndef update(self, instance, validated_data):\n instance.title = validated_data.get('title', instance.title)\n instance.code = validated_data.get('code', instance.code)\n instance.linenos = validated_data.get('linenos', instance.linenos)\n instance.language = validated_data.get('language', instance.language)\n instance.style = validated_data.get('style', instance.style)\n instance.save()\n return instance\n\ndef create(self, validated_data):\n return Snippet.objects.create(**validated_data)\n\n\n\nNote that these methods should return the newly created object instance.\n\n\nUse \n.validated_data\n instead of \n.object\n.\n\n\nYou must now use the \n.validated_data\n attribute if you need to inspect the data before saving, rather than using the \n.object\n attribute, which no longer exists.\n\n\nFor example the following code \nis no longer valid\n:\n\n\nif serializer.is_valid():\n name = serializer.object.name # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.object.user = request.user # Include the user when saving.\n serializer.save()\n\n\n\nInstead of using \n.object\n to inspect a partially constructed instance, you would now use \n.validated_data\n to inspect the cleaned incoming values. Also you can't set extra attributes on the instance directly, but instead pass them to the \n.save()\n method as keyword arguments.\n\n\nThe corresponding code would now look like this:\n\n\nif serializer.is_valid():\n name = serializer.validated_data['name'] # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.save(user=request.user) # Include the user when saving.\n\n\n\nUsing \n.is_valid(raise_exception=True)\n\n\nThe \n.is_valid()\n method now takes an optional boolean flag, \nraise_exception\n.\n\n\nCalling \n.is_valid(raise_exception=True)\n will cause a \nValidationError\n to be raised if the serializer data contains validation errors. This error will be handled by REST framework's default exception handler, allowing you to remove error response handling from your view code.\n\n\nThe handling and formatting of error responses may be altered globally by using the \nEXCEPTION_HANDLER\n settings key.\n\n\nThis change also means it's now possible to alter the style of error responses used by the built-in generic views, without having to include mixin classes or other overrides.\n\n\nUsing \nserializers.ValidationError\n.\n\n\nPreviously \nserializers.ValidationError\n error was simply a synonym for \ndjango.core.exceptions.ValidationError\n. This has now been altered so that it inherits from the standard \nAPIException\n base class.\n\n\nThe reason behind this is that Django's \nValidationError\n class is intended for use with HTML forms and its API makes using it slightly awkward with nested validation errors that can occur in serializers.\n\n\nFor most users this change shouldn't require any updates to your codebase, but it is worth ensuring that whenever raising validation errors you should prefer using the \nserializers.ValidationError\n exception class, and not Django's built-in exception.\n\n\nWe strongly recommend that you use the namespaced import style of \nimport serializers\n and not \nfrom serializers import ValidationError\n in order to avoid any potential confusion.\n\n\nChange to \nvalidate_\nfield_name\n.\n\n\nThe \nvalidate_\nfield_name\n method hooks that can be attached to serializer classes change their signature slightly and return type. Previously these would take a dictionary of all incoming data, and a key representing the field name, and would return a dictionary including the validated data for that field:\n\n\ndef validate_score(self, attrs, source):\n if attrs['score'] % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return attrs\n\n\n\nThis is now simplified slightly, and the method hooks simply take the value to be validated, and return the validated value.\n\n\ndef validate_score(self, value):\n if value % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return value\n\n\n\nAny ad-hoc validation that applies to more than one field should go in the \n.validate(self, attrs)\n method as usual.\n\n\nBecause \n.validate_\nfield_name\n would previously accept the complete dictionary of attributes, it could be used to validate a field depending on the input in another field. Now if you need to do this you should use \n.validate()\n instead.\n\n\nYou can either return \nnon_field_errors\n from the validate method by raising a simple \nValidationError\n\n\ndef validate(self, attrs):\n # serializer.errors == {'non_field_errors': ['A non field error']}\n raise serializers.ValidationError('A non field error')\n\n\n\nAlternatively if you want the errors to be against a specific field, use a dictionary of when instantiating the \nValidationError\n, like so:\n\n\ndef validate(self, attrs):\n # serializer.errors == {'my_field': ['A field error']}\n raise serializers.ValidationError({'my_field': 'A field error'})\n\n\n\nThis ensures you can still write validation that compares all the input fields, but that marks the error against a particular field.\n\n\nRemoval of \ntransform_\nfield_name\n.\n\n\nThe under-used \ntransform_\nfield_name\n on serializer classes is no longer provided. Instead you should just override \nto_representation()\n if you need to apply any modifications to the representation style.\n\n\nFor example:\n\n\ndef to_representation(self, instance):\n ret = super(UserSerializer, self).to_representation(instance)\n ret['username'] = ret['username'].lower()\n return ret\n\n\n\nDropping the extra point of API means there's now only one right way to do things. This helps with repetition and reinforcement of the core API, rather than having multiple differing approaches.\n\n\nIf you absolutely need to preserve \ntransform_\nfield_name\n behavior, for example, in order to provide a simpler 2.x to 3.0 upgrade, you can use a mixin, or serializer base class that add the behavior back in. For example:\n\n\nclass BaseModelSerializer(ModelSerializer):\n \"\"\"\n A custom ModelSerializer class that preserves 2.x style `transform_\nfield_name\n` behavior.\n \"\"\"\n def to_representation(self, instance):\n ret = super(BaseModelSerializer, self).to_representation(instance)\n for key, value in ret.items():\n method = getattr(self, 'transform_' + key, None)\n if method is not None:\n ret[key] = method(value)\n return ret\n\n\n\nDifferences between ModelSerializer validation and ModelForm.\n\n\nThis change also means that we no longer use the \n.full_clean()\n method on model instances, but instead perform all validation explicitly on the serializer. This gives a cleaner separation, and ensures that there's no automatic validation behavior on \nModelSerializer\n classes that can't also be easily replicated on regular \nSerializer\n classes.\n\n\nFor the most part this change should be transparent. Field validation and uniqueness checks will still be run as normal, but the implementation is a little different.\n\n\nThe one difference that you do need to note is that the \n.clean()\n method will not be called as part of serializer validation, as it would be if using a \nModelForm\n. Use the serializer \n.validate()\n method to perform a final validation step on incoming data where required.\n\n\nThere may be some cases where you really do need to keep validation logic in the model \n.clean()\n method, and cannot instead separate it into the serializer \n.validate()\n. You can do so by explicitly instantiating a model instance in the \n.validate()\n method.\n\n\ndef validate(self, attrs):\n instance = ExampleModel(**attrs)\n instance.clean()\n return attrs\n\n\n\nAgain, you really should look at properly separating the validation logic out of the model method if possible, but the above might be useful in some backwards compatibility cases, or for an easy migration path.\n\n\nWritable nested serialization.\n\n\nREST framework 2.x attempted to automatically support writable nested serialization, but the behavior was complex and non-obvious. Attempting to automatically handle these case is problematic:\n\n\n\n\nThere can be complex dependencies involved in order of saving multiple related model instances.\n\n\nIt's unclear what behavior the user should expect when related models are passed \nNone\n data.\n\n\nIt's unclear how the user should expect to-many relationships to handle updates, creations and deletions of multiple records.\n\n\n\n\nUsing the \ndepth\n option on \nModelSerializer\n will now create \nread-only nested serializers\n by default.\n\n\nIf you try to use a writable nested serializer without writing a custom \ncreate()\n and/or \nupdate()\n method you'll see an assertion error when you attempt to save the serializer. For example:\n\n\n class ProfileSerializer(serializers.ModelSerializer):\n\n class Meta:\n\n model = Profile\n\n fields = ('address', 'phone')\n\n\n\n class UserSerializer(serializers.ModelSerializer):\n\n profile = ProfileSerializer()\n\n class Meta:\n\n model = User\n\n fields = ('username', 'email', 'profile')\n\n\n\n data = {\n\n 'username': 'lizzy',\n\n 'email': 'lizzy@example.com',\n\n 'profile': {'address': '123 Acacia Avenue', 'phone': '01273 100200'}\n\n }\n\n\n\n serializer = UserSerializer(data=data)\n\n serializer.save()\nAssertionError: The `.create()` method does not support nested writable fields by default. Write an explicit `.create()` method for serializer `UserSerializer`, or set `read_only=True` on nested serializer fields.\n\n\n\nTo use writable nested serialization you'll want to declare a nested field on the serializer class, and write the \ncreate()\n and/or \nupdate()\n methods explicitly.\n\n\nclass UserSerializer(serializers.ModelSerializer):\n profile = ProfileSerializer()\n\n class Meta:\n model = User\n fields = ('username', 'email', 'profile')\n\n def create(self, validated_data):\n profile_data = validated_data.pop('profile')\n user = User.objects.create(**validated_data)\n Profile.objects.create(user=user, **profile_data)\n return user\n\n\n\nThe single-step object creation makes this far simpler and more obvious than the previous \n.restore_object()\n behavior.\n\n\nPrintable serializer representations.\n\n\nSerializer instances now support a printable representation that allows you to inspect the fields present on the instance.\n\n\nFor instance, given the following example model:\n\n\nclass LocationRating(models.Model):\n location = models.CharField(max_length=100)\n rating = models.IntegerField()\n created_by = models.ForeignKey(User)\n\n\n\nLet's create a simple \nModelSerializer\n class corresponding to the \nLocationRating\n model.\n\n\nclass LocationRatingSerializer(serializer.ModelSerializer):\n class Meta:\n model = LocationRating\n\n\n\nWe can now inspect the serializer representation in the Django shell, using \npython manage.py shell\n...\n\n\n serializer = LocationRatingSerializer()\n\n print(serializer) # Or use `print serializer` in Python 2.x\nLocationRatingSerializer():\n id = IntegerField(label='ID', read_only=True)\n location = CharField(max_length=100)\n rating = IntegerField()\n created_by = PrimaryKeyRelatedField(queryset=User.objects.all())\n\n\n\nThe \nextra_kwargs\n option.\n\n\nThe \nwrite_only_fields\n option on \nModelSerializer\n has been moved to \nPendingDeprecation\n and replaced with a more generic \nextra_kwargs\n.\n\n\nclass MySerializer(serializer.ModelSerializer):\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'is_admin': {'write_only': True}\n }\n\n\n\nAlternatively, specify the field explicitly on the serializer class:\n\n\nclass MySerializer(serializer.ModelSerializer):\n is_admin = serializers.BooleanField(write_only=True)\n\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin')\n\n\n\nThe \nread_only_fields\n option remains as a convenient shortcut for the more common case.\n\n\nChanges to \nHyperlinkedModelSerializer\n.\n\n\nThe \nview_name\n and \nlookup_field\n options have been moved to \nPendingDeprecation\n. They are no longer required, as you can use the \nextra_kwargs\n argument instead:\n\n\nclass MySerializer(serializer.HyperlinkedModelSerializer):\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'url': {'lookup_field': 'uuid'}\n }\n\n\n\nAlternatively, specify the field explicitly on the serializer class:\n\n\nclass MySerializer(serializer.HyperlinkedModelSerializer):\n url = serializers.HyperlinkedIdentityField(\n view_name='mymodel-detail',\n lookup_field='uuid'\n )\n\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin')\n\n\n\nFields for model methods and properties.\n\n\nWith \nModelSerializer\n you can now specify field names in the \nfields\n option that refer to model methods or properties. For example, suppose you have the following model:\n\n\nclass Invitation(models.Model):\n created = models.DateTimeField()\n to_email = models.EmailField()\n message = models.CharField(max_length=1000)\n\n def expiry_date(self):\n return self.created + datetime.timedelta(days=30)\n\n\n\nYou can include \nexpiry_date\n as a field option on a \nModelSerializer\n class.\n\n\nclass InvitationSerializer(serializers.ModelSerializer):\n class Meta:\n model = Invitation\n fields = ('to_email', 'message', 'expiry_date')\n\n\n\nThese fields will be mapped to \nserializers.ReadOnlyField()\n instances.\n\n\n serializer = InvitationSerializer()\n\n print repr(serializer)\nInvitationSerializer():\n to_email = EmailField(max_length=75)\n message = CharField(max_length=1000)\n expiry_date = ReadOnlyField()\n\n\n\nThe \nListSerializer\n class.\n\n\nThe \nListSerializer\n class has now been added, and allows you to create base serializer classes for only accepting multiple inputs.\n\n\nclass MultipleUserSerializer(ListSerializer):\n child = UserSerializer()\n\n\n\nYou can also still use the \nmany=True\n argument to serializer classes. It's worth noting that \nmany=True\n argument transparently creates a \nListSerializer\n instance, allowing the validation logic for list and non-list data to be cleanly separated in the REST framework codebase.\n\n\nYou will typically want to \ncontinue to use the existing \nmany=True\n flag\n rather than declaring \nListSerializer\n classes explicitly, but declaring the classes explicitly can be useful if you need to write custom \ncreate\n or \nupdate\n methods for bulk updates, or provide for other custom behavior.\n\n\nSee also the new \nListField\n class, which validates input in the same way, but does not include the serializer interfaces of \n.is_valid()\n, \n.data\n, \n.save()\n and so on.\n\n\nThe \nBaseSerializer\n class.\n\n\nREST framework now includes a simple \nBaseSerializer\n class that can be used to easily support alternative serialization and deserialization styles.\n\n\nThis class implements the same basic API as the \nSerializer\n class:\n\n\n\n\n.data\n - Returns the outgoing primitive representation.\n\n\n.is_valid()\n - Deserializes and validates incoming data.\n\n\n.validated_data\n - Returns the validated incoming data.\n\n\n.errors\n - Returns an errors during validation.\n\n\n.save()\n - Persists the validated data into an object instance.\n\n\n\n\nThere are four methods that can be overridden, depending on what functionality you want the serializer class to support:\n\n\n\n\n.to_representation()\n - Override this to support serialization, for read operations.\n\n\n.to_internal_value()\n - Override this to support deserialization, for write operations.\n\n\n.create()\n and \n.update()\n - Override either or both of these to support saving instances.\n\n\n\n\nBecause this class provides the same interface as the \nSerializer\n class, you can use it with the existing generic class based views exactly as you would for a regular \nSerializer\n or \nModelSerializer\n.\n\n\nThe only difference you'll notice when doing so is the \nBaseSerializer\n classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.\n\n\nRead-only \nBaseSerializer\n classes.\n\n\nTo implement a read-only serializer using the \nBaseSerializer\n class, we just need to override the \n.to_representation()\n method. Let's take a look at an example using a simple Django model:\n\n\nclass HighScore(models.Model):\n created = models.DateTimeField(auto_now_add=True)\n player_name = models.CharField(max_length=10)\n score = models.IntegerField()\n\n\n\nIt's simple to create a read-only serializer for converting \nHighScore\n instances into primitive data types.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n\n\nWe can now use this class to serialize single \nHighScore\n instances:\n\n\n@api_view(['GET'])\ndef high_score(request, pk):\n instance = HighScore.objects.get(pk=pk)\n serializer = HighScoreSerializer(instance)\n return Response(serializer.data)\n\n\n\nOr use it to serialize multiple instances:\n\n\n@api_view(['GET'])\ndef all_high_scores(request):\n queryset = HighScore.objects.order_by('-score')\n serializer = HighScoreSerializer(queryset, many=True)\n return Response(serializer.data)\n\n\n\nRead-write \nBaseSerializer\n classes.\n\n\nTo create a read-write serializer we first need to implement a \n.to_internal_value()\n method. This method returns the validated values that will be used to construct the object instance, and may raise a \nValidationError\n if the supplied data is in an incorrect format.\n\n\nOnce you've implemented \n.to_internal_value()\n, the basic validation API will be available on the serializer, and you will be able to use \n.is_valid()\n, \n.validated_data\n and \n.errors\n.\n\n\nIf you want to also support \n.save()\n you'll need to also implement either or both of the \n.create()\n and \n.update()\n methods.\n\n\nHere's a complete example of our previous \nHighScoreSerializer\n, that's been updated to support both read and write operations.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_internal_value(self, data):\n score = data.get('score')\n player_name = data.get('player_name')\n\n # Perform the data validation.\n if not score:\n raise ValidationError({\n 'score': 'This field is required.'\n })\n if not player_name:\n raise ValidationError({\n 'player_name': 'This field is required.'\n })\n if len(player_name) \n 10:\n raise ValidationError({\n 'player_name': 'May not be more than 10 characters.'\n })\n\n # Return the validated values. This will be available as\n # the `.validated_data` property.\n return {\n 'score': int(score),\n 'player_name': player_name\n }\n\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n def create(self, validated_data):\n return HighScore.objects.create(**validated_data)\n\n\n\nCreating new generic serializers with \nBaseSerializer\n.\n\n\nThe \nBaseSerializer\n class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.\n\n\nThe following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.\n\n\nclass ObjectSerializer(serializers.BaseSerializer):\n \"\"\"\n A read-only serializer that coerces arbitrary complex objects\n into primitive representations.\n \"\"\"\n def to_representation(self, obj):\n for attribute_name in dir(obj):\n attribute = getattr(obj, attribute_name)\n if attribute_name('_'):\n # Ignore private attributes.\n pass\n elif hasattr(attribute, '__call__'):\n # Ignore methods and other callables.\n pass\n elif isinstance(attribute, (str, int, bool, float, type(None))):\n # Primitive types can be passed through unmodified.\n output[attribute_name] = attribute\n elif isinstance(attribute, list):\n # Recursively deal with items in lists.\n output[attribute_name] = [\n self.to_representation(item) for item in attribute\n ]\n elif isinstance(attribute, dict):\n # Recursively deal with items in dictionaries.\n output[attribute_name] = {\n str(key): self.to_representation(value)\n for key, value in attribute.items()\n }\n else:\n # Force anything else to its string representation.\n output[attribute_name] = str(attribute)\n\n\n\n\n\nSerializer fields\n\n\nThe \nField\n and \nReadOnly\n field classes.\n\n\nThere are some minor tweaks to the field base classes.\n\n\nPreviously we had these two base classes:\n\n\n\n\nField\n as the base class for read-only fields. A default implementation was included for serializing data.\n\n\nWritableField\n as the base class for read-write fields.\n\n\n\n\nWe now use the following:\n\n\n\n\nField\n is the base class for all fields. It does not include any default implementation for either serializing or deserializing data.\n\n\nReadOnlyField\n is a concrete implementation for read-only fields that simply returns the attribute value without modification.\n\n\n\n\nThe \nrequired\n, \nallow_null\n, \nallow_blank\n and \ndefault\n arguments.\n\n\nREST framework now has more explicit and clear control over validating empty values for fields.\n\n\nPreviously the meaning of the \nrequired=False\n keyword argument was underspecified. In practice its use meant that a field could either be not included in the input, or it could be included, but be \nNone\n or the empty string.\n\n\nWe now have a better separation, with separate \nrequired\n, \nallow_null\n and \nallow_blank\n arguments.\n\n\nThe following set of arguments are used to control validation of empty values:\n\n\n\n\nrequired=False\n: The value does not need to be present in the input, and will not be passed to \n.create()\n or \n.update()\n if it is not seen.\n\n\ndefault=\nvalue\n: The value does not need to be present in the input, and a default value will be passed to \n.create()\n or \n.update()\n if it is not seen.\n\n\nallow_null=True\n: \nNone\n is a valid input.\n\n\nallow_blank=True\n: \n''\n is valid input. For \nCharField\n and subclasses only.\n\n\n\n\nTypically you'll want to use \nrequired=False\n if the corresponding model field has a default value, and additionally set either \nallow_null=True\n or \nallow_blank=True\n if required.\n\n\nThe \ndefault\n argument is also available and always implies that the field is not required to be in the input. It is unnecessary to use the \nrequired\n argument when a default is specified, and doing so will result in an error.\n\n\nCoercing output types.\n\n\nThe previous field implementations did not forcibly coerce returned values into the correct type in many cases. For example, an \nIntegerField\n would return a string output if the attribute value was a string. We now more strictly coerce to the correct return type, leading to more constrained and expected behavior.\n\n\nRemoval of \n.validate()\n.\n\n\nThe \n.validate()\n method is now removed from field classes. This method was in any case undocumented and not public API. You should instead simply override \nto_internal_value()\n.\n\n\nclass UppercaseCharField(serializers.CharField):\n def to_internal_value(self, data):\n value = super(UppercaseCharField, self).to_internal_value(data)\n if value != value.upper():\n raise serializers.ValidationError('The input should be uppercase only.')\n return value\n\n\n\nPreviously validation errors could be raised in either \n.to_native()\n or \n.validate()\n, making it non-obvious which should be used. Providing only a single point of API ensures more repetition and reinforcement of the core API.\n\n\nThe \nListField\n class.\n\n\nThe \nListField\n class has now been added. This field validates list input. It takes a \nchild\n keyword argument which is used to specify the field used to validate each item in the list. For example:\n\n\nscores = ListField(child=IntegerField(min_value=0, max_value=100))\n\n\n\nYou can also use a declarative style to create new subclasses of \nListField\n, like this:\n\n\nclass ScoresField(ListField):\n child = IntegerField(min_value=0, max_value=100)\n\n\n\nWe can now use the \nScoresField\n class inside another serializer:\n\n\nscores = ScoresField()\n\n\n\nSee also the new \nListSerializer\n class, which validates input in the same way, but also includes the serializer interfaces of \n.is_valid()\n, \n.data\n, \n.save()\n and so on.\n\n\nThe \nChoiceField\n class may now accept a flat list.\n\n\nThe \nChoiceField\n class may now accept a list of choices in addition to the existing style of using a list of pairs of \n(name, display_value)\n. The following is now valid:\n\n\ncolor = ChoiceField(choices=['red', 'green', 'blue'])\n\n\n\nThe \nMultipleChoiceField\n class.\n\n\nThe \nMultipleChoiceField\n class has been added. This field acts like \nChoiceField\n, but returns a set, which may include none, one or many of the valid choices.\n\n\nChanges to the custom field API.\n\n\nThe \nfrom_native(self, value)\n and \nto_native(self, data)\n method names have been replaced with the more obviously named \nto_internal_value(self, data)\n and \nto_representation(self, value)\n.\n\n\nThe \nfield_from_native()\n and \nfield_to_native()\n methods are removed. Previously you could use these methods if you wanted to customise the behaviour in a way that did not simply lookup the field value from the object. For example...\n\n\ndef field_to_native(self, obj, field_name):\n \"\"\"A custom read-only field that returns the class name.\"\"\"\n return obj.__class__.__name__\n\n\n\nNow if you need to access the entire object you'll instead need to override one or both of the following:\n\n\n\n\nUse \nget_attribute\n to modify the attribute value passed to \nto_representation()\n.\n\n\nUse \nget_value\n to modify the data value passed \nto_internal_value()\n.\n\n\n\n\nFor example:\n\n\ndef get_attribute(self, obj):\n # Pass the entire object through to `to_representation()`,\n # instead of the standard attribute lookup.\n return obj\n\ndef to_representation(self, value):\n return value.__class__.__name__\n\n\n\nExplicit \nqueryset\n required on relational fields.\n\n\nPreviously relational fields that were explicitly declared on a serializer class could omit the queryset argument if (and only if) they were declared on a \nModelSerializer\n.\n\n\nThis code \nwould be valid\n in \n2.4.3\n:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n class Meta:\n model = Account\n\n\n\nHowever this code \nwould not be valid\n in \n3.0\n:\n\n\n# Missing `queryset`\nclass AccountSerializer(serializers.Serializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n def restore_object(self, attrs, instance=None):\n # ...\n\n\n\nThe queryset argument is now always required for writable relational fields.\nThis removes some magic and makes it easier and more obvious to move between implicit \nModelSerializer\n classes and explicit \nSerializer\n classes.\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(\n slug_field='name',\n queryset=Organization.objects.all()\n )\n\n class Meta:\n model = Account\n\n\n\nThe \nqueryset\n argument is only ever required for writable fields, and is not required or valid for fields with \nread_only=True\n.\n\n\nOptional argument to \nSerializerMethodField\n.\n\n\nThe argument to \nSerializerMethodField\n is now optional, and defaults to \nget_\nfield_name\n. For example the following is valid:\n\n\nclass AccountSerializer(serializers.Serializer):\n # `method_name='get_billing_details'` by default.\n billing_details = serializers.SerializerMethodField()\n\n def get_billing_details(self, account):\n return calculate_billing(account)\n\n\n\nIn order to ensure a consistent code style an assertion error will be raised if you include a redundant method name argument that matches the default method name. For example, the following code \nwill raise an error\n:\n\n\nbilling_details = serializers.SerializerMethodField('get_billing_details')\n\n\n\nEnforcing consistent \nsource\n usage.\n\n\nI've see several codebases that unnecessarily include the \nsource\n argument, setting it to the same value as the field name. This usage is redundant and confusing, making it less obvious that \nsource\n is usually not required.\n\n\nThe following usage will \nnow raise an error\n:\n\n\nemail = serializers.EmailField(source='email')\n\n\n\nThe \nUniqueValidator\n and \nUniqueTogetherValidator\n classes.\n\n\nREST framework now provides new validators that allow you to ensure field uniqueness, while still using a completely explicit \nSerializer\n class instead of using \nModelSerializer\n.\n\n\nThe \nUniqueValidator\n should be applied to a serializer field, and takes a single \nqueryset\n argument.\n\n\nfrom rest_framework import serializers\nfrom rest_framework.validators import UniqueValidator\n\nclass OrganizationSerializer(serializers.Serializer):\n url = serializers.HyperlinkedIdentityField(view_name='organization_detail')\n created = serializers.DateTimeField(read_only=True)\n name = serializers.CharField(\n max_length=100,\n validators=UniqueValidator(queryset=Organization.objects.all())\n )\n\n\n\nThe \nUniqueTogetherValidator\n should be applied to a serializer, and takes a \nqueryset\n argument and a \nfields\n argument which should be a list or tuple of field names.\n\n\nclass RaceResultSerializer(serializers.Serializer):\n category = serializers.ChoiceField(['5k', '10k'])\n position = serializers.IntegerField()\n name = serializers.CharField(max_length=100)\n\n class Meta:\n validators = [UniqueTogetherValidator(\n queryset=RaceResult.objects.all(),\n fields=('category', 'position')\n )]\n\n\n\nThe \nUniqueForDateValidator\n classes.\n\n\nREST framework also now includes explicit validator classes for validating the \nunique_for_date\n, \nunique_for_month\n, and \nunique_for_year\n model field constraints. These are used internally instead of calling into \nModel.full_clean()\n.\n\n\nThese classes are documented in the \nValidators\n section of the documentation.\n\n\n\n\nGeneric views\n\n\nSimplification of view logic.\n\n\nThe view logic for the default method handlers has been significantly simplified, due to the new serializers API.\n\n\nChanges to pre/post save hooks.\n\n\nThe \npre_save\n and \npost_save\n hooks no longer exist, but are replaced with \nperform_create(self, serializer)\n and \nperform_update(self, serializer)\n.\n\n\nThese methods should save the object instance by calling \nserializer.save()\n, adding in any additional arguments as required. They may also perform any custom pre-save or post-save behavior.\n\n\nFor example:\n\n\ndef perform_create(self, serializer):\n # Include the owner attribute directly, rather than from request data.\n instance = serializer.save(owner=self.request.user)\n # Perform a custom post-save action.\n send_email(instance.to_email, instance.message)\n\n\n\nThe \npre_delete\n and \npost_delete\n hooks no longer exist, and are replaced with \n.perform_destroy(self, instance)\n, which should delete the instance and perform any custom actions.\n\n\ndef perform_destroy(self, instance):\n # Perform a custom pre-delete action.\n send_deletion_alert(user=instance.created_by, deleted=instance)\n # Delete the object instance.\n instance.delete()\n\n\n\nRemoval of view attributes.\n\n\nThe \n.object\n and \n.object_list\n attributes are no longer set on the view instance. Treating views as mutable object instances that store state during the processing of the view tends to be poor design, and can lead to obscure flow logic.\n\n\nI would personally recommend that developers treat view instances as immutable objects in their application code.\n\n\nPUT as create.\n\n\nAllowing \nPUT\n as create operations is problematic, as it necessarily exposes information about the existence or non-existence of objects. It's also not obvious that transparently allowing re-creating of previously deleted instances is necessarily a better default behavior than simply returning \n404\n responses.\n\n\nBoth styles \"\nPUT\n as 404\" and \"\nPUT\n as create\" can be valid in different circumstances, but we've now opted for the 404 behavior as the default, due to it being simpler and more obvious.\n\n\nIf you need to restore the previous behavior you may want to include \nthis \nAllowPUTAsCreateMixin\n class\n as a mixin to your views.\n\n\nCustomizing error responses.\n\n\nThe generic views now raise \nValidationFailed\n exception for invalid data. This exception is then dealt with by the exception handler, rather than the view returning a \n400 Bad Request\n response directly.\n\n\nThis change means that you can now easily customize the style of error responses across your entire API, without having to modify any of the generic views.\n\n\n\n\nThe metadata API\n\n\nBehavior for dealing with \nOPTIONS\n requests was previously built directly into the class based views. This has now been properly separated out into a Metadata API that allows the same pluggable style as other API policies in REST framework.\n\n\nThis makes it far easier to use a different style for \nOPTIONS\n responses throughout your API, and makes it possible to create third-party metadata policies.\n\n\n\n\nSerializers as HTML forms\n\n\nREST framework 3.0 includes templated HTML form rendering for serializers.\n\n\nThis API should not yet be considered finalized, and will only be promoted to public API for the 3.1 release.\n\n\nSignificant changes that you do need to be aware of include:\n\n\n\n\nNested HTML forms are now supported, for example, a \nUserSerializer\n with a nested \nProfileSerializer\n will now render a nested \nfieldset\n when used in the browsable API.\n\n\nNested lists of HTML forms are not yet supported, but are planned for 3.1.\n\n\nBecause we now use templated HTML form generation, \nthe \nwidget\n option is no longer available for serializer fields\n. You can instead control the template that is used for a given field, by using the \nstyle\n dictionary.\n\n\n\n\nThe \nstyle\n keyword argument for serializer fields.\n\n\nThe \nstyle\n keyword argument can be used to pass through additional information from a serializer field, to the renderer class. In particular, the \nHTMLFormRenderer\n uses the \nbase_template\n key to determine which template to render the field with.\n\n\nFor example, to use a \ntextarea\n control instead of the default \ninput\n control, you would use the following\u2026\n\n\nadditional_notes = serializers.CharField(\n style={'base_template': 'textarea.html'}\n)\n\n\n\nSimilarly, to use a radio button control instead of the default \nselect\n control, you would use the following\u2026\n\n\ncolor_channel = serializers.ChoiceField(\n choices=['red', 'blue', 'green'],\n style={'base_template': 'radio.html'}\n)\n\n\n\nThis API should be considered provisional, and there may be minor alterations with the incoming 3.1 release.\n\n\n\n\nAPI style\n\n\nThere are some improvements in the default style we use in our API responses.\n\n\nUnicode JSON by default.\n\n\nUnicode JSON is now the default. The \nUnicodeJSONRenderer\n class no longer exists, and the \nUNICODE_JSON\n setting has been added. To revert this behavior use the new setting:\n\n\nREST_FRAMEWORK = {\n 'UNICODE_JSON': False\n}\n\n\n\nCompact JSON by default.\n\n\nWe now output compact JSON in responses by default. For example, we return:\n\n\n{\"email\":\"amy@example.com\",\"is_admin\":true}\n\n\n\nInstead of the following:\n\n\n{\"email\": \"amy@example.com\", \"is_admin\": true}\n\n\n\nThe \nCOMPACT_JSON\n setting has been added, and can be used to revert this behavior if needed:\n\n\nREST_FRAMEWORK = {\n 'COMPACT_JSON': False\n}\n\n\n\nFile fields as URLs\n\n\nThe \nFileField\n and \nImageField\n classes are now represented as URLs by default. You should ensure you set Django's \nstandard \nMEDIA_URL\n setting\n appropriately, and ensure your application \nserves the uploaded files\n.\n\n\nYou can revert this behavior, and display filenames in the representation by using the \nUPLOADED_FILES_USE_URL\n settings key:\n\n\nREST_FRAMEWORK = {\n 'UPLOADED_FILES_USE_URL': False\n}\n\n\n\nYou can also modify serializer fields individually, using the \nuse_url\n argument:\n\n\nuploaded_file = serializers.FileField(use_url=False)\n\n\n\nAlso note that you should pass the \nrequest\n object to the serializer as context when instantiating it, so that a fully qualified URL can be returned. Returned URLs will then be of the form \nhttps://example.com/url_path/filename.txt\n. For example:\n\n\ncontext = {'request': request}\nserializer = ExampleSerializer(instance, context=context)\nreturn Response(serializer.data)\n\n\n\nIf the request is omitted from the context, the returned URLs will be of the form \n/url_path/filename.txt\n.\n\n\nThrottle headers using \nRetry-After\n.\n\n\nThe custom \nX-Throttle-Wait-Second\n header has now been dropped in favor of the standard \nRetry-After\n header. You can revert this behavior if needed by writing a custom exception handler for your application.\n\n\nDate and time objects as ISO-8859-1 strings in serializer data.\n\n\nDate and Time objects are now coerced to strings by default in the serializer output. Previously they were returned as \nDate\n, \nTime\n and \nDateTime\n objects, and later coerced to strings by the renderer.\n\n\nYou can modify this behavior globally by settings the existing \nDATE_FORMAT\n, \nDATETIME_FORMAT\n and \nTIME_FORMAT\n settings keys. Setting these values to \nNone\n instead of their default value of \n'iso-8859-1'\n will result in native objects being returned in serializer data.\n\n\nREST_FRAMEWORK = {\n # Return native `Date` and `Time` objects in `serializer.data`\n 'DATETIME_FORMAT': None\n 'DATE_FORMAT': None\n 'TIME_FORMAT': None\n}\n\n\n\nYou can also modify serializer fields individually, using the \ndate_format\n, \ntime_format\n and \ndatetime_format\n arguments:\n\n\n# Return `DateTime` instances in `serializer.data`, not strings.\ncreated = serializers.DateTimeField(format=None)\n\n\n\nDecimals as strings in serializer data.\n\n\nDecimals are now coerced to strings by default in the serializer output. Previously they were returned as \nDecimal\n objects, and later coerced to strings by the renderer.\n\n\nYou can modify this behavior globally by using the \nCOERCE_DECIMAL_TO_STRING\n settings key.\n\n\nREST_FRAMEWORK = {\n 'COERCE_DECIMAL_TO_STRING': False\n}\n\n\n\nOr modify it on an individual serializer field, using the \ncoerce_to_string\n keyword argument.\n\n\n# Return `Decimal` instances in `serializer.data`, not strings.\namount = serializers.DecimalField(\n max_digits=10,\n decimal_places=2,\n coerce_to_string=False\n)\n\n\n\nThe default JSON renderer will return float objects for un-coerced \nDecimal\n instances. This allows you to easily switch between string or float representations for decimals depending on your API design needs.\n\n\n\n\nMiscellaneous notes\n\n\n\n\nThe serializer \nChoiceField\n does not currently display nested choices, as was the case in 2.4. This will be address as part of 3.1.\n\n\nDue to the new templated form rendering, the 'widget' option is no longer valid. This means there's no easy way of using third party \"autocomplete\" widgets for rendering select inputs that contain a large number of choices. You'll either need to use a regular select or a plain text input. We may consider addressing this in 3.1 or 3.2 if there's sufficient demand.\n\n\nSome of the default validation error messages were rewritten and might no longer be pre-translated. You can still \ncreate language files with Django\n if you wish to localize them.\n\n\nAPIException\n subclasses could previously take any arbitrary type in the \ndetail\n argument. These exceptions now use translatable text strings, and as a result call \nforce_text\n on the \ndetail\n argument, which \nmust be a string\n. If you need complex arguments to an \nAPIException\n class, you should subclass it and override the \n__init__()\n method. Typically you'll instead want to use a custom exception handler to provide for non-standard error responses.\n\n\n\n\n\n\nWhat's coming next\n\n\n3.0 is an incremental release, and there are several upcoming features that will build on the baseline improvements that it makes.\n\n\nThe 3.1 release is planned to address improvements in the following components:\n\n\n\n\nPublic API for using serializers as HTML forms.\n\n\nRequest parsing, mediatypes \n the implementation of the browsable API.\n\n\nIntroduction of a new pagination API.\n\n\nBetter support for API versioning.\n\n\n\n\nThe 3.2 release is planned to introduce an alternative admin-style interface to the browsable API.\n\n\nYou can follow development on the GitHub site, where we use \nmilestones to indicate planning timescales\n.",
+ "text": "Django REST framework 3.0\n\n\nThe 3.0 release of Django REST framework is the result of almost four years of iteration and refinement. It comprehensively addresses some of the previous remaining design issues in serializers, fields and the generic views.\n\n\nThis release is incremental in nature. There \nare\n some breaking API changes, and upgrading \nwill\n require you to read the release notes carefully, but the migration path should otherwise be relatively straightforward.\n\n\nThe difference in quality of the REST framework API and implementation should make writing, maintaining and debugging your application far easier.\n\n\n3.0 is the first of three releases that have been funded by our recent \nKickstarter campaign\n.\n\n\nAs ever, a huge thank you to our many \nwonderful sponsors\n. If you're looking for a Django gig, and want to work with smart community-minded folks, you should probably check out that list and see who's hiring.\n\n\n\n\nNew features\n\n\nNotable features of this new release include:\n\n\n\n\nPrintable representations on serializers that allow you to inspect exactly what fields are present on the instance.\n\n\nSimple model serializers that are vastly easier to understand and debug, and that make it easy to switch between the implicit \nModelSerializer\n class and the explicit \nSerializer\n class.\n\n\nA new \nBaseSerializer\n class, making it easier to write serializers for alternative storage backends, or to completely customize your serialization and validation logic.\n\n\nA cleaner fields API including new classes such as \nListField\n and \nMultipleChoiceField\n.\n\n\nSuper simple default implementations\n for the generic views.\n\n\nSupport for overriding how validation errors are handled by your API.\n\n\nA metadata API that allows you to customize how \nOPTIONS\n requests are handled by your API.\n\n\nA more compact JSON output with unicode style encoding turned on by default.\n\n\nTemplated based HTML form rendering for serializers. This will be finalized as public API in the upcoming 3.1 release.\n\n\n\n\nSignificant new functionality continues to be planned for the 3.1 and 3.2 releases. These releases will correspond to the two \nKickstarter stretch goals\n - \"Feature improvements\" and \"Admin interface\". Further 3.x releases will present simple upgrades, without the same level of fundamental API changes necessary for the 3.0 release.\n\n\n\n\nREST framework: Under the hood.\n\n\nThis talk from the \nDjango: Under the Hood\n event in Amsterdam, Nov 2014, gives some good background context on the design decisions behind 3.0.\n\n\n\n\n\n\n\nBelow is an in-depth guide to the API changes and migration notes for 3.0.\n\n\nRequest objects\n\n\n.query_params\n properties.\nThe \n.data\n and \n\n\nThe usage of \nrequest.DATA\n and \nrequest.FILES\n is now pending deprecation in favor of a single \nrequest.data\n attribute that contains \nall\n the parsed data.\n\n\nHaving separate attributes is reasonable for web applications that only ever parse url-encoded or multipart requests, but makes less sense for the general-purpose request parsing that REST framework supports.\n\n\nYou may now pass all the request data to a serializer class in a single argument:\n\n\n# Do this...\nExampleSerializer(data=request.data)\n\n\n\nInstead of passing the files argument separately:\n\n\n# Don't do this...\nExampleSerializer(data=request.DATA, files=request.FILES)\n\n\n\nThe usage of \nrequest.QUERY_PARAMS\n is now pending deprecation in favor of the lowercased \nrequest.query_params\n.\n\n\n\n\nSerializers\n\n\nSingle-step object creation.\n\n\nPreviously the serializers used a two-step object creation, as follows:\n\n\n\n\nValidating the data would create an object instance. This instance would be available as \nserializer.object\n.\n\n\nCalling \nserializer.save()\n would then save the object instance to the database.\n\n\n\n\nThis style is in-line with how the \nModelForm\n class works in Django, but is problematic for a number of reasons:\n\n\n\n\nSome data, such as many-to-many relationships, cannot be added to the object instance until after it has been saved. This type of data needed to be hidden in some undocumented state on the object instance, or kept as state on the serializer instance so that it could be used when \n.save()\n is called.\n\n\nInstantiating model instances directly means that you cannot use model manager classes for instance creation, e.g. \nExampleModel.objects.create(...)\n. Manager classes are an excellent layer at which to enforce business logic and application-level data constraints.\n\n\nThe two step process makes it unclear where to put deserialization logic. For example, should extra attributes such as the current user get added to the instance during object creation or during object save?\n\n\n\n\nWe now use single-step object creation, like so:\n\n\n\n\nValidating the data makes the cleaned data available as \nserializer.validated_data\n.\n\n\nCalling \nserializer.save()\n then saves and returns the new object instance.\n\n\n\n\nThe resulting API changes are further detailed below.\n\n\n.update()\n methods.\nThe \n.create()\n and \n\n\nThe \n.restore_object()\n method is now removed, and we instead have two separate methods, \n.create()\n and \n.update()\n. These methods work slightly different to the previous \n.restore_object()\n.\n\n\nWhen using the \n.create()\n and \n.update()\n methods you should both create \nand save\n the object instance. This is in contrast to the previous \n.restore_object()\n behavior that would instantiate the object but not save it.\n\n\nThese methods also replace the optional \n.save_object()\n method, which no longer exists.\n\n\nThe following example from the tutorial previously used \nrestore_object()\n to handle both creating and updating object instances.\n\n\ndef restore_object(self, attrs, instance=None):\n if instance:\n # Update existing instance\n instance.title = attrs.get('title', instance.title)\n instance.code = attrs.get('code', instance.code)\n instance.linenos = attrs.get('linenos', instance.linenos)\n instance.language = attrs.get('language', instance.language)\n instance.style = attrs.get('style', instance.style)\n return instance\n\n # Create new instance\n return Snippet(**attrs)\n\n\n\nThis would now be split out into two separate methods.\n\n\ndef update(self, instance, validated_data):\n instance.title = validated_data.get('title', instance.title)\n instance.code = validated_data.get('code', instance.code)\n instance.linenos = validated_data.get('linenos', instance.linenos)\n instance.language = validated_data.get('language', instance.language)\n instance.style = validated_data.get('style', instance.style)\n instance.save()\n return instance\n\ndef create(self, validated_data):\n return Snippet.objects.create(**validated_data)\n\n\n\nNote that these methods should return the newly created object instance.\n\n\n.object\n.\nUse \n.validated_data\n instead of \n\n\nYou must now use the \n.validated_data\n attribute if you need to inspect the data before saving, rather than using the \n.object\n attribute, which no longer exists.\n\n\nFor example the following code \nis no longer valid\n:\n\n\nif serializer.is_valid():\n name = serializer.object.name # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.object.user = request.user # Include the user when saving.\n serializer.save()\n\n\n\nInstead of using \n.object\n to inspect a partially constructed instance, you would now use \n.validated_data\n to inspect the cleaned incoming values. Also you can't set extra attributes on the instance directly, but instead pass them to the \n.save()\n method as keyword arguments.\n\n\nThe corresponding code would now look like this:\n\n\nif serializer.is_valid():\n name = serializer.validated_data['name'] # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.save(user=request.user) # Include the user when saving.\n\n\n\nUsing \n.is_valid(raise_exception=True)\n\n\nThe \n.is_valid()\n method now takes an optional boolean flag, \nraise_exception\n.\n\n\nCalling \n.is_valid(raise_exception=True)\n will cause a \nValidationError\n to be raised if the serializer data contains validation errors. This error will be handled by REST framework's default exception handler, allowing you to remove error response handling from your view code.\n\n\nThe handling and formatting of error responses may be altered globally by using the \nEXCEPTION_HANDLER\n settings key.\n\n\nThis change also means it's now possible to alter the style of error responses used by the built-in generic views, without having to include mixin classes or other overrides.\n\n\nUsing \nserializers.ValidationError\n.\n\n\nPreviously \nserializers.ValidationError\n error was simply a synonym for \ndjango.core.exceptions.ValidationError\n. This has now been altered so that it inherits from the standard \nAPIException\n base class.\n\n\nThe reason behind this is that Django's \nValidationError\n class is intended for use with HTML forms and its API makes using it slightly awkward with nested validation errors that can occur in serializers.\n\n\nFor most users this change shouldn't require any updates to your codebase, but it is worth ensuring that whenever raising validation errors you should prefer using the \nserializers.ValidationError\n exception class, and not Django's built-in exception.\n\n\nWe strongly recommend that you use the namespaced import style of \nimport serializers\n and not \nfrom serializers import ValidationError\n in order to avoid any potential confusion.\n\n\nChange to \nvalidate_\nfield_name\n.\n\n\nThe \nvalidate_\nfield_name\n method hooks that can be attached to serializer classes change their signature slightly and return type. Previously these would take a dictionary of all incoming data, and a key representing the field name, and would return a dictionary including the validated data for that field:\n\n\ndef validate_score(self, attrs, source):\n if attrs['score'] % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return attrs\n\n\n\nThis is now simplified slightly, and the method hooks simply take the value to be validated, and return the validated value.\n\n\ndef validate_score(self, value):\n if value % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return value\n\n\n\nAny ad-hoc validation that applies to more than one field should go in the \n.validate(self, attrs)\n method as usual.\n\n\nBecause \n.validate_\nfield_name\n would previously accept the complete dictionary of attributes, it could be used to validate a field depending on the input in another field. Now if you need to do this you should use \n.validate()\n instead.\n\n\nYou can either return \nnon_field_errors\n from the validate method by raising a simple \nValidationError\n\n\ndef validate(self, attrs):\n # serializer.errors == {'non_field_errors': ['A non field error']}\n raise serializers.ValidationError('A non field error')\n\n\n\nAlternatively if you want the errors to be against a specific field, use a dictionary of when instantiating the \nValidationError\n, like so:\n\n\ndef validate(self, attrs):\n # serializer.errors == {'my_field': ['A field error']}\n raise serializers.ValidationError({'my_field': 'A field error'})\n\n\n\nThis ensures you can still write validation that compares all the input fields, but that marks the error against a particular field.\n\n\nRemoval of \ntransform_\nfield_name\n.\n\n\nThe under-used \ntransform_\nfield_name\n on serializer classes is no longer provided. Instead you should just override \nto_representation()\n if you need to apply any modifications to the representation style.\n\n\nFor example:\n\n\ndef to_representation(self, instance):\n ret = super(UserSerializer, self).to_representation(instance)\n ret['username'] = ret['username'].lower()\n return ret\n\n\n\nDropping the extra point of API means there's now only one right way to do things. This helps with repetition and reinforcement of the core API, rather than having multiple differing approaches.\n\n\nIf you absolutely need to preserve \ntransform_\nfield_name\n behavior, for example, in order to provide a simpler 2.x to 3.0 upgrade, you can use a mixin, or serializer base class that add the behavior back in. For example:\n\n\nclass BaseModelSerializer(ModelSerializer):\n \"\"\"\n A custom ModelSerializer class that preserves 2.x style `transform_\nfield_name\n` behavior.\n \"\"\"\n def to_representation(self, instance):\n ret = super(BaseModelSerializer, self).to_representation(instance)\n for key, value in ret.items():\n method = getattr(self, 'transform_' + key, None)\n if method is not None:\n ret[key] = method(value)\n return ret\n\n\n\nDifferences between ModelSerializer validation and ModelForm.\n\n\nThis change also means that we no longer use the \n.full_clean()\n method on model instances, but instead perform all validation explicitly on the serializer. This gives a cleaner separation, and ensures that there's no automatic validation behavior on \nModelSerializer\n classes that can't also be easily replicated on regular \nSerializer\n classes.\n\n\nFor the most part this change should be transparent. Field validation and uniqueness checks will still be run as normal, but the implementation is a little different.\n\n\nThe one difference that you do need to note is that the \n.clean()\n method will not be called as part of serializer validation, as it would be if using a \nModelForm\n. Use the serializer \n.validate()\n method to perform a final validation step on incoming data where required.\n\n\nThere may be some cases where you really do need to keep validation logic in the model \n.clean()\n method, and cannot instead separate it into the serializer \n.validate()\n. You can do so by explicitly instantiating a model instance in the \n.validate()\n method.\n\n\ndef validate(self, attrs):\n instance = ExampleModel(**attrs)\n instance.clean()\n return attrs\n\n\n\nAgain, you really should look at properly separating the validation logic out of the model method if possible, but the above might be useful in some backwards compatibility cases, or for an easy migration path.\n\n\nWritable nested serialization.\n\n\nREST framework 2.x attempted to automatically support writable nested serialization, but the behavior was complex and non-obvious. Attempting to automatically handle these case is problematic:\n\n\n\n\nThere can be complex dependencies involved in order of saving multiple related model instances.\n\n\nIt's unclear what behavior the user should expect when related models are passed \nNone\n data.\n\n\nIt's unclear how the user should expect to-many relationships to handle updates, creations and deletions of multiple records.\n\n\n\n\nUsing the \ndepth\n option on \nModelSerializer\n will now create \nread-only nested serializers\n by default.\n\n\nIf you try to use a writable nested serializer without writing a custom \ncreate()\n and/or \nupdate()\n method you'll see an assertion error when you attempt to save the serializer. For example:\n\n\n class ProfileSerializer(serializers.ModelSerializer):\n\n class Meta:\n\n model = Profile\n\n fields = ('address', 'phone')\n\n\n\n class UserSerializer(serializers.ModelSerializer):\n\n profile = ProfileSerializer()\n\n class Meta:\n\n model = User\n\n fields = ('username', 'email', 'profile')\n\n\n\n data = {\n\n 'username': 'lizzy',\n\n 'email': 'lizzy@example.com',\n\n 'profile': {'address': '123 Acacia Avenue', 'phone': '01273 100200'}\n\n }\n\n\n\n serializer = UserSerializer(data=data)\n\n serializer.save()\nAssertionError: The `.create()` method does not support nested writable fields by default. Write an explicit `.create()` method for serializer `UserSerializer`, or set `read_only=True` on nested serializer fields.\n\n\n\nTo use writable nested serialization you'll want to declare a nested field on the serializer class, and write the \ncreate()\n and/or \nupdate()\n methods explicitly.\n\n\nclass UserSerializer(serializers.ModelSerializer):\n profile = ProfileSerializer()\n\n class Meta:\n model = User\n fields = ('username', 'email', 'profile')\n\n def create(self, validated_data):\n profile_data = validated_data.pop('profile')\n user = User.objects.create(**validated_data)\n Profile.objects.create(user=user, **profile_data)\n return user\n\n\n\nThe single-step object creation makes this far simpler and more obvious than the previous \n.restore_object()\n behavior.\n\n\nPrintable serializer representations.\n\n\nSerializer instances now support a printable representation that allows you to inspect the fields present on the instance.\n\n\nFor instance, given the following example model:\n\n\nclass LocationRating(models.Model):\n location = models.CharField(max_length=100)\n rating = models.IntegerField()\n created_by = models.ForeignKey(User)\n\n\n\nLet's create a simple \nModelSerializer\n class corresponding to the \nLocationRating\n model.\n\n\nclass LocationRatingSerializer(serializer.ModelSerializer):\n class Meta:\n model = LocationRating\n\n\n\nWe can now inspect the serializer representation in the Django shell, using \npython manage.py shell\n...\n\n\n serializer = LocationRatingSerializer()\n\n print(serializer) # Or use `print serializer` in Python 2.x\nLocationRatingSerializer():\n id = IntegerField(label='ID', read_only=True)\n location = CharField(max_length=100)\n rating = IntegerField()\n created_by = PrimaryKeyRelatedField(queryset=User.objects.all())\n\n\n\nThe \nextra_kwargs\n option.\n\n\nThe \nwrite_only_fields\n option on \nModelSerializer\n has been moved to \nPendingDeprecation\n and replaced with a more generic \nextra_kwargs\n.\n\n\nclass MySerializer(serializer.ModelSerializer):\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'is_admin': {'write_only': True}\n }\n\n\n\nAlternatively, specify the field explicitly on the serializer class:\n\n\nclass MySerializer(serializer.ModelSerializer):\n is_admin = serializers.BooleanField(write_only=True)\n\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin')\n\n\n\nThe \nread_only_fields\n option remains as a convenient shortcut for the more common case.\n\n\nChanges to \nHyperlinkedModelSerializer\n.\n\n\nThe \nview_name\n and \nlookup_field\n options have been moved to \nPendingDeprecation\n. They are no longer required, as you can use the \nextra_kwargs\n argument instead:\n\n\nclass MySerializer(serializer.HyperlinkedModelSerializer):\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'url': {'lookup_field': 'uuid'}\n }\n\n\n\nAlternatively, specify the field explicitly on the serializer class:\n\n\nclass MySerializer(serializer.HyperlinkedModelSerializer):\n url = serializers.HyperlinkedIdentityField(\n view_name='mymodel-detail',\n lookup_field='uuid'\n )\n\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin')\n\n\n\nFields for model methods and properties.\n\n\nWith \nModelSerializer\n you can now specify field names in the \nfields\n option that refer to model methods or properties. For example, suppose you have the following model:\n\n\nclass Invitation(models.Model):\n created = models.DateTimeField()\n to_email = models.EmailField()\n message = models.CharField(max_length=1000)\n\n def expiry_date(self):\n return self.created + datetime.timedelta(days=30)\n\n\n\nYou can include \nexpiry_date\n as a field option on a \nModelSerializer\n class.\n\n\nclass InvitationSerializer(serializers.ModelSerializer):\n class Meta:\n model = Invitation\n fields = ('to_email', 'message', 'expiry_date')\n\n\n\nThese fields will be mapped to \nserializers.ReadOnlyField()\n instances.\n\n\n serializer = InvitationSerializer()\n\n print repr(serializer)\nInvitationSerializer():\n to_email = EmailField(max_length=75)\n message = CharField(max_length=1000)\n expiry_date = ReadOnlyField()\n\n\n\nThe \nListSerializer\n class.\n\n\nThe \nListSerializer\n class has now been added, and allows you to create base serializer classes for only accepting multiple inputs.\n\n\nclass MultipleUserSerializer(ListSerializer):\n child = UserSerializer()\n\n\n\nYou can also still use the \nmany=True\n argument to serializer classes. It's worth noting that \nmany=True\n argument transparently creates a \nListSerializer\n instance, allowing the validation logic for list and non-list data to be cleanly separated in the REST framework codebase.\n\n\nYou will typically want to \ncontinue to use the existing \nmany=True\n flag\n rather than declaring \nListSerializer\n classes explicitly, but declaring the classes explicitly can be useful if you need to write custom \ncreate\n or \nupdate\n methods for bulk updates, or provide for other custom behavior.\n\n\nSee also the new \nListField\n class, which validates input in the same way, but does not include the serializer interfaces of \n.is_valid()\n, \n.data\n, \n.save()\n and so on.\n\n\nThe \nBaseSerializer\n class.\n\n\nREST framework now includes a simple \nBaseSerializer\n class that can be used to easily support alternative serialization and deserialization styles.\n\n\nThis class implements the same basic API as the \nSerializer\n class:\n\n\n\n\n.data\n - Returns the outgoing primitive representation.\n\n\n.is_valid()\n - Deserializes and validates incoming data.\n\n\n.validated_data\n - Returns the validated incoming data.\n\n\n.errors\n - Returns an errors during validation.\n\n\n.save()\n - Persists the validated data into an object instance.\n\n\n\n\nThere are four methods that can be overridden, depending on what functionality you want the serializer class to support:\n\n\n\n\n.to_representation()\n - Override this to support serialization, for read operations.\n\n\n.to_internal_value()\n - Override this to support deserialization, for write operations.\n\n\n.create()\n and \n.update()\n - Override either or both of these to support saving instances.\n\n\n\n\nBecause this class provides the same interface as the \nSerializer\n class, you can use it with the existing generic class based views exactly as you would for a regular \nSerializer\n or \nModelSerializer\n.\n\n\nThe only difference you'll notice when doing so is the \nBaseSerializer\n classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input.\n\n\nRead-only \nBaseSerializer\n classes.\n\n\nTo implement a read-only serializer using the \nBaseSerializer\n class, we just need to override the \n.to_representation()\n method. Let's take a look at an example using a simple Django model:\n\n\nclass HighScore(models.Model):\n created = models.DateTimeField(auto_now_add=True)\n player_name = models.CharField(max_length=10)\n score = models.IntegerField()\n\n\n\nIt's simple to create a read-only serializer for converting \nHighScore\n instances into primitive data types.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n\n\nWe can now use this class to serialize single \nHighScore\n instances:\n\n\n@api_view(['GET'])\ndef high_score(request, pk):\n instance = HighScore.objects.get(pk=pk)\n serializer = HighScoreSerializer(instance)\n return Response(serializer.data)\n\n\n\nOr use it to serialize multiple instances:\n\n\n@api_view(['GET'])\ndef all_high_scores(request):\n queryset = HighScore.objects.order_by('-score')\n serializer = HighScoreSerializer(queryset, many=True)\n return Response(serializer.data)\n\n\n\nRead-write \nBaseSerializer\n classes.\n\n\nTo create a read-write serializer we first need to implement a \n.to_internal_value()\n method. This method returns the validated values that will be used to construct the object instance, and may raise a \nValidationError\n if the supplied data is in an incorrect format.\n\n\nOnce you've implemented \n.to_internal_value()\n, the basic validation API will be available on the serializer, and you will be able to use \n.is_valid()\n, \n.validated_data\n and \n.errors\n.\n\n\nIf you want to also support \n.save()\n you'll need to also implement either or both of the \n.create()\n and \n.update()\n methods.\n\n\nHere's a complete example of our previous \nHighScoreSerializer\n, that's been updated to support both read and write operations.\n\n\nclass HighScoreSerializer(serializers.BaseSerializer):\n def to_internal_value(self, data):\n score = data.get('score')\n player_name = data.get('player_name')\n\n # Perform the data validation.\n if not score:\n raise ValidationError({\n 'score': 'This field is required.'\n })\n if not player_name:\n raise ValidationError({\n 'player_name': 'This field is required.'\n })\n if len(player_name) \n 10:\n raise ValidationError({\n 'player_name': 'May not be more than 10 characters.'\n })\n\n # Return the validated values. This will be available as\n # the `.validated_data` property.\n return {\n 'score': int(score),\n 'player_name': player_name\n }\n\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n def create(self, validated_data):\n return HighScore.objects.create(**validated_data)\n\n\n\nCreating new generic serializers with \nBaseSerializer\n.\n\n\nThe \nBaseSerializer\n class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends.\n\n\nThe following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations.\n\n\nclass ObjectSerializer(serializers.BaseSerializer):\n \"\"\"\n A read-only serializer that coerces arbitrary complex objects\n into primitive representations.\n \"\"\"\n def to_representation(self, obj):\n for attribute_name in dir(obj):\n attribute = getattr(obj, attribute_name)\n if attribute_name('_'):\n # Ignore private attributes.\n pass\n elif hasattr(attribute, '__call__'):\n # Ignore methods and other callables.\n pass\n elif isinstance(attribute, (str, int, bool, float, type(None))):\n # Primitive types can be passed through unmodified.\n output[attribute_name] = attribute\n elif isinstance(attribute, list):\n # Recursively deal with items in lists.\n output[attribute_name] = [\n self.to_representation(item) for item in attribute\n ]\n elif isinstance(attribute, dict):\n # Recursively deal with items in dictionaries.\n output[attribute_name] = {\n str(key): self.to_representation(value)\n for key, value in attribute.items()\n }\n else:\n # Force anything else to its string representation.\n output[attribute_name] = str(attribute)\n\n\n\n\n\nSerializer fields\n\n\nReadOnly\n field classes.\nThe \nField\n and \n\n\nThere are some minor tweaks to the field base classes.\n\n\nPreviously we had these two base classes:\n\n\n\n\nField\n as the base class for read-only fields. A default implementation was included for serializing data.\n\n\nWritableField\n as the base class for read-write fields.\n\n\n\n\nWe now use the following:\n\n\n\n\nField\n is the base class for all fields. It does not include any default implementation for either serializing or deserializing data.\n\n\nReadOnlyField\n is a concrete implementation for read-only fields that simply returns the attribute value without modification.\n\n\n\n\nallow_null\n, \ndefault\n arguments.\nThe \nrequired\n, \nallow_blank\n and \n\n\nREST framework now has more explicit and clear control over validating empty values for fields.\n\n\nPreviously the meaning of the \nrequired=False\n keyword argument was underspecified. In practice its use meant that a field could either be not included in the input, or it could be included, but be \nNone\n or the empty string.\n\n\nWe now have a better separation, with separate \nrequired\n, \nallow_null\n and \nallow_blank\n arguments.\n\n\nThe following set of arguments are used to control validation of empty values:\n\n\n\n\nrequired=False\n: The value does not need to be present in the input, and will not be passed to \n.create()\n or \n.update()\n if it is not seen.\n\n\ndefault=\nvalue\n: The value does not need to be present in the input, and a default value will be passed to \n.create()\n or \n.update()\n if it is not seen.\n\n\nallow_null=True\n: \nNone\n is a valid input.\n\n\nallow_blank=True\n: \n''\n is valid input. For \nCharField\n and subclasses only.\n\n\n\n\nTypically you'll want to use \nrequired=False\n if the corresponding model field has a default value, and additionally set either \nallow_null=True\n or \nallow_blank=True\n if required.\n\n\nThe \ndefault\n argument is also available and always implies that the field is not required to be in the input. It is unnecessary to use the \nrequired\n argument when a default is specified, and doing so will result in an error.\n\n\nCoercing output types.\n\n\nThe previous field implementations did not forcibly coerce returned values into the correct type in many cases. For example, an \nIntegerField\n would return a string output if the attribute value was a string. We now more strictly coerce to the correct return type, leading to more constrained and expected behavior.\n\n\nRemoval of \n.validate()\n.\n\n\nThe \n.validate()\n method is now removed from field classes. This method was in any case undocumented and not public API. You should instead simply override \nto_internal_value()\n.\n\n\nclass UppercaseCharField(serializers.CharField):\n def to_internal_value(self, data):\n value = super(UppercaseCharField, self).to_internal_value(data)\n if value != value.upper():\n raise serializers.ValidationError('The input should be uppercase only.')\n return value\n\n\n\nPreviously validation errors could be raised in either \n.to_native()\n or \n.validate()\n, making it non-obvious which should be used. Providing only a single point of API ensures more repetition and reinforcement of the core API.\n\n\nThe \nListField\n class.\n\n\nThe \nListField\n class has now been added. This field validates list input. It takes a \nchild\n keyword argument which is used to specify the field used to validate each item in the list. For example:\n\n\nscores = ListField(child=IntegerField(min_value=0, max_value=100))\n\n\n\nYou can also use a declarative style to create new subclasses of \nListField\n, like this:\n\n\nclass ScoresField(ListField):\n child = IntegerField(min_value=0, max_value=100)\n\n\n\nWe can now use the \nScoresField\n class inside another serializer:\n\n\nscores = ScoresField()\n\n\n\nSee also the new \nListSerializer\n class, which validates input in the same way, but also includes the serializer interfaces of \n.is_valid()\n, \n.data\n, \n.save()\n and so on.\n\n\nThe \nChoiceField\n class may now accept a flat list.\n\n\nThe \nChoiceField\n class may now accept a list of choices in addition to the existing style of using a list of pairs of \n(name, display_value)\n. The following is now valid:\n\n\ncolor = ChoiceField(choices=['red', 'green', 'blue'])\n\n\n\nThe \nMultipleChoiceField\n class.\n\n\nThe \nMultipleChoiceField\n class has been added. This field acts like \nChoiceField\n, but returns a set, which may include none, one or many of the valid choices.\n\n\nChanges to the custom field API.\n\n\nThe \nfrom_native(self, value)\n and \nto_native(self, data)\n method names have been replaced with the more obviously named \nto_internal_value(self, data)\n and \nto_representation(self, value)\n.\n\n\nThe \nfield_from_native()\n and \nfield_to_native()\n methods are removed. Previously you could use these methods if you wanted to customise the behaviour in a way that did not simply lookup the field value from the object. For example...\n\n\ndef field_to_native(self, obj, field_name):\n \"\"\"A custom read-only field that returns the class name.\"\"\"\n return obj.__class__.__name__\n\n\n\nNow if you need to access the entire object you'll instead need to override one or both of the following:\n\n\n\n\nUse \nget_attribute\n to modify the attribute value passed to \nto_representation()\n.\n\n\nUse \nget_value\n to modify the data value passed \nto_internal_value()\n.\n\n\n\n\nFor example:\n\n\ndef get_attribute(self, obj):\n # Pass the entire object through to `to_representation()`,\n # instead of the standard attribute lookup.\n return obj\n\ndef to_representation(self, value):\n return value.__class__.__name__\n\n\n\nExplicit \nqueryset\n required on relational fields.\n\n\nPreviously relational fields that were explicitly declared on a serializer class could omit the queryset argument if (and only if) they were declared on a \nModelSerializer\n.\n\n\nThis code \nwould be valid\n in \n2.4.3\n:\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n class Meta:\n model = Account\n\n\n\nHowever this code \nwould not be valid\n in \n3.0\n:\n\n\n# Missing `queryset`\nclass AccountSerializer(serializers.Serializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n def restore_object(self, attrs, instance=None):\n # ...\n\n\n\nThe queryset argument is now always required for writable relational fields.\nThis removes some magic and makes it easier and more obvious to move between implicit \nModelSerializer\n classes and explicit \nSerializer\n classes.\n\n\nclass AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(\n slug_field='name',\n queryset=Organization.objects.all()\n )\n\n class Meta:\n model = Account\n\n\n\nThe \nqueryset\n argument is only ever required for writable fields, and is not required or valid for fields with \nread_only=True\n.\n\n\nOptional argument to \nSerializerMethodField\n.\n\n\nThe argument to \nSerializerMethodField\n is now optional, and defaults to \nget_\nfield_name\n. For example the following is valid:\n\n\nclass AccountSerializer(serializers.Serializer):\n # `method_name='get_billing_details'` by default.\n billing_details = serializers.SerializerMethodField()\n\n def get_billing_details(self, account):\n return calculate_billing(account)\n\n\n\nIn order to ensure a consistent code style an assertion error will be raised if you include a redundant method name argument that matches the default method name. For example, the following code \nwill raise an error\n:\n\n\nbilling_details = serializers.SerializerMethodField('get_billing_details')\n\n\n\nEnforcing consistent \nsource\n usage.\n\n\nI've see several codebases that unnecessarily include the \nsource\n argument, setting it to the same value as the field name. This usage is redundant and confusing, making it less obvious that \nsource\n is usually not required.\n\n\nThe following usage will \nnow raise an error\n:\n\n\nemail = serializers.EmailField(source='email')\n\n\n\nUniqueTogetherValidator\n classes.\nThe \nUniqueValidator\n and \n\n\nREST framework now provides new validators that allow you to ensure field uniqueness, while still using a completely explicit \nSerializer\n class instead of using \nModelSerializer\n.\n\n\nThe \nUniqueValidator\n should be applied to a serializer field, and takes a single \nqueryset\n argument.\n\n\nfrom rest_framework import serializers\nfrom rest_framework.validators import UniqueValidator\n\nclass OrganizationSerializer(serializers.Serializer):\n url = serializers.HyperlinkedIdentityField(view_name='organization_detail')\n created = serializers.DateTimeField(read_only=True)\n name = serializers.CharField(\n max_length=100,\n validators=UniqueValidator(queryset=Organization.objects.all())\n )\n\n\n\nThe \nUniqueTogetherValidator\n should be applied to a serializer, and takes a \nqueryset\n argument and a \nfields\n argument which should be a list or tuple of field names.\n\n\nclass RaceResultSerializer(serializers.Serializer):\n category = serializers.ChoiceField(['5k', '10k'])\n position = serializers.IntegerField()\n name = serializers.CharField(max_length=100)\n\n class Meta:\n validators = [UniqueTogetherValidator(\n queryset=RaceResult.objects.all(),\n fields=('category', 'position')\n )]\n\n\n\nThe \nUniqueForDateValidator\n classes.\n\n\nREST framework also now includes explicit validator classes for validating the \nunique_for_date\n, \nunique_for_month\n, and \nunique_for_year\n model field constraints. These are used internally instead of calling into \nModel.full_clean()\n.\n\n\nThese classes are documented in the \nValidators\n section of the documentation.\n\n\n\n\nGeneric views\n\n\nSimplification of view logic.\n\n\nThe view logic for the default method handlers has been significantly simplified, due to the new serializers API.\n\n\nChanges to pre/post save hooks.\n\n\nThe \npre_save\n and \npost_save\n hooks no longer exist, but are replaced with \nperform_create(self, serializer)\n and \nperform_update(self, serializer)\n.\n\n\nThese methods should save the object instance by calling \nserializer.save()\n, adding in any additional arguments as required. They may also perform any custom pre-save or post-save behavior.\n\n\nFor example:\n\n\ndef perform_create(self, serializer):\n # Include the owner attribute directly, rather than from request data.\n instance = serializer.save(owner=self.request.user)\n # Perform a custom post-save action.\n send_email(instance.to_email, instance.message)\n\n\n\nThe \npre_delete\n and \npost_delete\n hooks no longer exist, and are replaced with \n.perform_destroy(self, instance)\n, which should delete the instance and perform any custom actions.\n\n\ndef perform_destroy(self, instance):\n # Perform a custom pre-delete action.\n send_deletion_alert(user=instance.created_by, deleted=instance)\n # Delete the object instance.\n instance.delete()\n\n\n\nRemoval of view attributes.\n\n\nThe \n.object\n and \n.object_list\n attributes are no longer set on the view instance. Treating views as mutable object instances that store state during the processing of the view tends to be poor design, and can lead to obscure flow logic.\n\n\nI would personally recommend that developers treat view instances as immutable objects in their application code.\n\n\nPUT as create.\n\n\nAllowing \nPUT\n as create operations is problematic, as it necessarily exposes information about the existence or non-existence of objects. It's also not obvious that transparently allowing re-creating of previously deleted instances is necessarily a better default behavior than simply returning \n404\n responses.\n\n\nBoth styles \"\nPUT\n as 404\" and \"\nPUT\n as create\" can be valid in different circumstances, but we've now opted for the 404 behavior as the default, due to it being simpler and more obvious.\n\n\nIf you need to restore the previous behavior you may want to include \nthis \nAllowPUTAsCreateMixin\n class\n as a mixin to your views.\n\n\nCustomizing error responses.\n\n\nThe generic views now raise \nValidationFailed\n exception for invalid data. This exception is then dealt with by the exception handler, rather than the view returning a \n400 Bad Request\n response directly.\n\n\nThis change means that you can now easily customize the style of error responses across your entire API, without having to modify any of the generic views.\n\n\n\n\nThe metadata API\n\n\nBehavior for dealing with \nOPTIONS\n requests was previously built directly into the class based views. This has now been properly separated out into a Metadata API that allows the same pluggable style as other API policies in REST framework.\n\n\nThis makes it far easier to use a different style for \nOPTIONS\n responses throughout your API, and makes it possible to create third-party metadata policies.\n\n\n\n\nSerializers as HTML forms\n\n\nREST framework 3.0 includes templated HTML form rendering for serializers.\n\n\nThis API should not yet be considered finalized, and will only be promoted to public API for the 3.1 release.\n\n\nSignificant changes that you do need to be aware of include:\n\n\n\n\nNested HTML forms are now supported, for example, a \nUserSerializer\n with a nested \nProfileSerializer\n will now render a nested \nfieldset\n when used in the browsable API.\n\n\nNested lists of HTML forms are not yet supported, but are planned for 3.1.\n\n\nBecause we now use templated HTML form generation, \nthe \nwidget\n option is no longer available for serializer fields\n. You can instead control the template that is used for a given field, by using the \nstyle\n dictionary.\n\n\n\n\nThe \nstyle\n keyword argument for serializer fields.\n\n\nThe \nstyle\n keyword argument can be used to pass through additional information from a serializer field, to the renderer class. In particular, the \nHTMLFormRenderer\n uses the \nbase_template\n key to determine which template to render the field with.\n\n\nFor example, to use a \ntextarea\n control instead of the default \ninput\n control, you would use the following\u2026\n\n\nadditional_notes = serializers.CharField(\n style={'base_template': 'textarea.html'}\n)\n\n\n\nSimilarly, to use a radio button control instead of the default \nselect\n control, you would use the following\u2026\n\n\ncolor_channel = serializers.ChoiceField(\n choices=['red', 'blue', 'green'],\n style={'base_template': 'radio.html'}\n)\n\n\n\nThis API should be considered provisional, and there may be minor alterations with the incoming 3.1 release.\n\n\n\n\nAPI style\n\n\nThere are some improvements in the default style we use in our API responses.\n\n\nUnicode JSON by default.\n\n\nUnicode JSON is now the default. The \nUnicodeJSONRenderer\n class no longer exists, and the \nUNICODE_JSON\n setting has been added. To revert this behavior use the new setting:\n\n\nREST_FRAMEWORK = {\n 'UNICODE_JSON': False\n}\n\n\n\nCompact JSON by default.\n\n\nWe now output compact JSON in responses by default. For example, we return:\n\n\n{\"email\":\"amy@example.com\",\"is_admin\":true}\n\n\n\nInstead of the following:\n\n\n{\"email\": \"amy@example.com\", \"is_admin\": true}\n\n\n\nThe \nCOMPACT_JSON\n setting has been added, and can be used to revert this behavior if needed:\n\n\nREST_FRAMEWORK = {\n 'COMPACT_JSON': False\n}\n\n\n\nFile fields as URLs\n\n\nThe \nFileField\n and \nImageField\n classes are now represented as URLs by default. You should ensure you set Django's \nstandard \nMEDIA_URL\n setting\n appropriately, and ensure your application \nserves the uploaded files\n.\n\n\nYou can revert this behavior, and display filenames in the representation by using the \nUPLOADED_FILES_USE_URL\n settings key:\n\n\nREST_FRAMEWORK = {\n 'UPLOADED_FILES_USE_URL': False\n}\n\n\n\nYou can also modify serializer fields individually, using the \nuse_url\n argument:\n\n\nuploaded_file = serializers.FileField(use_url=False)\n\n\n\nAlso note that you should pass the \nrequest\n object to the serializer as context when instantiating it, so that a fully qualified URL can be returned. Returned URLs will then be of the form \nhttps://example.com/url_path/filename.txt\n. For example:\n\n\ncontext = {'request': request}\nserializer = ExampleSerializer(instance, context=context)\nreturn Response(serializer.data)\n\n\n\nIf the request is omitted from the context, the returned URLs will be of the form \n/url_path/filename.txt\n.\n\n\nThrottle headers using \nRetry-After\n.\n\n\nThe custom \nX-Throttle-Wait-Second\n header has now been dropped in favor of the standard \nRetry-After\n header. You can revert this behavior if needed by writing a custom exception handler for your application.\n\n\nDate and time objects as ISO-8859-1 strings in serializer data.\n\n\nDate and Time objects are now coerced to strings by default in the serializer output. Previously they were returned as \nDate\n, \nTime\n and \nDateTime\n objects, and later coerced to strings by the renderer.\n\n\nYou can modify this behavior globally by settings the existing \nDATE_FORMAT\n, \nDATETIME_FORMAT\n and \nTIME_FORMAT\n settings keys. Setting these values to \nNone\n instead of their default value of \n'iso-8859-1'\n will result in native objects being returned in serializer data.\n\n\nREST_FRAMEWORK = {\n # Return native `Date` and `Time` objects in `serializer.data`\n 'DATETIME_FORMAT': None\n 'DATE_FORMAT': None\n 'TIME_FORMAT': None\n}\n\n\n\nYou can also modify serializer fields individually, using the \ndate_format\n, \ntime_format\n and \ndatetime_format\n arguments:\n\n\n# Return `DateTime` instances in `serializer.data`, not strings.\ncreated = serializers.DateTimeField(format=None)\n\n\n\nDecimals as strings in serializer data.\n\n\nDecimals are now coerced to strings by default in the serializer output. Previously they were returned as \nDecimal\n objects, and later coerced to strings by the renderer.\n\n\nYou can modify this behavior globally by using the \nCOERCE_DECIMAL_TO_STRING\n settings key.\n\n\nREST_FRAMEWORK = {\n 'COERCE_DECIMAL_TO_STRING': False\n}\n\n\n\nOr modify it on an individual serializer field, using the \ncoerce_to_string\n keyword argument.\n\n\n# Return `Decimal` instances in `serializer.data`, not strings.\namount = serializers.DecimalField(\n max_digits=10,\n decimal_places=2,\n coerce_to_string=False\n)\n\n\n\nThe default JSON renderer will return float objects for un-coerced \nDecimal\n instances. This allows you to easily switch between string or float representations for decimals depending on your API design needs.\n\n\n\n\nMiscellaneous notes\n\n\n\n\nThe serializer \nChoiceField\n does not currently display nested choices, as was the case in 2.4. This will be address as part of 3.1.\n\n\nDue to the new templated form rendering, the 'widget' option is no longer valid. This means there's no easy way of using third party \"autocomplete\" widgets for rendering select inputs that contain a large number of choices. You'll either need to use a regular select or a plain text input. We may consider addressing this in 3.1 or 3.2 if there's sufficient demand.\n\n\nSome of the default validation error messages were rewritten and might no longer be pre-translated. You can still \ncreate language files with Django\n if you wish to localize them.\n\n\nAPIException\n subclasses could previously take any arbitrary type in the \ndetail\n argument. These exceptions now use translatable text strings, and as a result call \nforce_text\n on the \ndetail\n argument, which \nmust be a string\n. If you need complex arguments to an \nAPIException\n class, you should subclass it and override the \n__init__()\n method. Typically you'll instead want to use a custom exception handler to provide for non-standard error responses.\n\n\n\n\n\n\nWhat's coming next\n\n\n3.0 is an incremental release, and there are several upcoming features that will build on the baseline improvements that it makes.\n\n\nThe 3.1 release is planned to address improvements in the following components:\n\n\n\n\nPublic API for using serializers as HTML forms.\n\n\nRequest parsing, mediatypes \n the implementation of the browsable API.\n\n\nIntroduction of a new pagination API.\n\n\nBetter support for API versioning.\n\n\n\n\nThe 3.2 release is planned to introduce an alternative admin-style interface to the browsable API.\n\n\nYou can follow development on the GitHub site, where we use \nmilestones to indicate planning timescales\n.",
"title": "3.0 Announcement"
},
{
@@ -2917,17 +2917,17 @@
},
{
"location": "/topics/3.0-announcement/#request-objects",
- "text": "The .data and .query_params properties. The usage of request.DATA and request.FILES is now pending deprecation in favor of a single request.data attribute that contains all the parsed data. Having separate attributes is reasonable for web applications that only ever parse url-encoded or multipart requests, but makes less sense for the general-purpose request parsing that REST framework supports. You may now pass all the request data to a serializer class in a single argument: # Do this...\nExampleSerializer(data=request.data) Instead of passing the files argument separately: # Don't do this...\nExampleSerializer(data=request.DATA, files=request.FILES) The usage of request.QUERY_PARAMS is now pending deprecation in favor of the lowercased request.query_params .",
+ "text": ".query_params properties. The .data and The usage of request.DATA and request.FILES is now pending deprecation in favor of a single request.data attribute that contains all the parsed data. Having separate attributes is reasonable for web applications that only ever parse url-encoded or multipart requests, but makes less sense for the general-purpose request parsing that REST framework supports. You may now pass all the request data to a serializer class in a single argument: # Do this...\nExampleSerializer(data=request.data) Instead of passing the files argument separately: # Don't do this...\nExampleSerializer(data=request.DATA, files=request.FILES) The usage of request.QUERY_PARAMS is now pending deprecation in favor of the lowercased request.query_params .",
"title": "Request objects"
},
{
"location": "/topics/3.0-announcement/#serializers",
- "text": "Single-step object creation. Previously the serializers used a two-step object creation, as follows: Validating the data would create an object instance. This instance would be available as serializer.object . Calling serializer.save() would then save the object instance to the database. This style is in-line with how the ModelForm class works in Django, but is problematic for a number of reasons: Some data, such as many-to-many relationships, cannot be added to the object instance until after it has been saved. This type of data needed to be hidden in some undocumented state on the object instance, or kept as state on the serializer instance so that it could be used when .save() is called. Instantiating model instances directly means that you cannot use model manager classes for instance creation, e.g. ExampleModel.objects.create(...) . Manager classes are an excellent layer at which to enforce business logic and application-level data constraints. The two step process makes it unclear where to put deserialization logic. For example, should extra attributes such as the current user get added to the instance during object creation or during object save? We now use single-step object creation, like so: Validating the data makes the cleaned data available as serializer.validated_data . Calling serializer.save() then saves and returns the new object instance. The resulting API changes are further detailed below. The .create() and .update() methods. The .restore_object() method is now removed, and we instead have two separate methods, .create() and .update() . These methods work slightly different to the previous .restore_object() . When using the .create() and .update() methods you should both create and save the object instance. This is in contrast to the previous .restore_object() behavior that would instantiate the object but not save it. These methods also replace the optional .save_object() method, which no longer exists. The following example from the tutorial previously used restore_object() to handle both creating and updating object instances. def restore_object(self, attrs, instance=None):\n if instance:\n # Update existing instance\n instance.title = attrs.get('title', instance.title)\n instance.code = attrs.get('code', instance.code)\n instance.linenos = attrs.get('linenos', instance.linenos)\n instance.language = attrs.get('language', instance.language)\n instance.style = attrs.get('style', instance.style)\n return instance\n\n # Create new instance\n return Snippet(**attrs) This would now be split out into two separate methods. def update(self, instance, validated_data):\n instance.title = validated_data.get('title', instance.title)\n instance.code = validated_data.get('code', instance.code)\n instance.linenos = validated_data.get('linenos', instance.linenos)\n instance.language = validated_data.get('language', instance.language)\n instance.style = validated_data.get('style', instance.style)\n instance.save()\n return instance\n\ndef create(self, validated_data):\n return Snippet.objects.create(**validated_data) Note that these methods should return the newly created object instance. Use .validated_data instead of .object . You must now use the .validated_data attribute if you need to inspect the data before saving, rather than using the .object attribute, which no longer exists. For example the following code is no longer valid : if serializer.is_valid():\n name = serializer.object.name # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.object.user = request.user # Include the user when saving.\n serializer.save() Instead of using .object to inspect a partially constructed instance, you would now use .validated_data to inspect the cleaned incoming values. Also you can't set extra attributes on the instance directly, but instead pass them to the .save() method as keyword arguments. The corresponding code would now look like this: if serializer.is_valid():\n name = serializer.validated_data['name'] # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.save(user=request.user) # Include the user when saving. Using .is_valid(raise_exception=True) The .is_valid() method now takes an optional boolean flag, raise_exception . Calling .is_valid(raise_exception=True) will cause a ValidationError to be raised if the serializer data contains validation errors. This error will be handled by REST framework's default exception handler, allowing you to remove error response handling from your view code. The handling and formatting of error responses may be altered globally by using the EXCEPTION_HANDLER settings key. This change also means it's now possible to alter the style of error responses used by the built-in generic views, without having to include mixin classes or other overrides. Using serializers.ValidationError . Previously serializers.ValidationError error was simply a synonym for django.core.exceptions.ValidationError . This has now been altered so that it inherits from the standard APIException base class. The reason behind this is that Django's ValidationError class is intended for use with HTML forms and its API makes using it slightly awkward with nested validation errors that can occur in serializers. For most users this change shouldn't require any updates to your codebase, but it is worth ensuring that whenever raising validation errors you should prefer using the serializers.ValidationError exception class, and not Django's built-in exception. We strongly recommend that you use the namespaced import style of import serializers and not from serializers import ValidationError in order to avoid any potential confusion. Change to validate_ field_name . The validate_ field_name method hooks that can be attached to serializer classes change their signature slightly and return type. Previously these would take a dictionary of all incoming data, and a key representing the field name, and would return a dictionary including the validated data for that field: def validate_score(self, attrs, source):\n if attrs['score'] % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return attrs This is now simplified slightly, and the method hooks simply take the value to be validated, and return the validated value. def validate_score(self, value):\n if value % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return value Any ad-hoc validation that applies to more than one field should go in the .validate(self, attrs) method as usual. Because .validate_ field_name would previously accept the complete dictionary of attributes, it could be used to validate a field depending on the input in another field. Now if you need to do this you should use .validate() instead. You can either return non_field_errors from the validate method by raising a simple ValidationError def validate(self, attrs):\n # serializer.errors == {'non_field_errors': ['A non field error']}\n raise serializers.ValidationError('A non field error') Alternatively if you want the errors to be against a specific field, use a dictionary of when instantiating the ValidationError , like so: def validate(self, attrs):\n # serializer.errors == {'my_field': ['A field error']}\n raise serializers.ValidationError({'my_field': 'A field error'}) This ensures you can still write validation that compares all the input fields, but that marks the error against a particular field. Removal of transform_ field_name . The under-used transform_ field_name on serializer classes is no longer provided. Instead you should just override to_representation() if you need to apply any modifications to the representation style. For example: def to_representation(self, instance):\n ret = super(UserSerializer, self).to_representation(instance)\n ret['username'] = ret['username'].lower()\n return ret Dropping the extra point of API means there's now only one right way to do things. This helps with repetition and reinforcement of the core API, rather than having multiple differing approaches. If you absolutely need to preserve transform_ field_name behavior, for example, in order to provide a simpler 2.x to 3.0 upgrade, you can use a mixin, or serializer base class that add the behavior back in. For example: class BaseModelSerializer(ModelSerializer):\n \"\"\"\n A custom ModelSerializer class that preserves 2.x style `transform_ field_name ` behavior.\n \"\"\"\n def to_representation(self, instance):\n ret = super(BaseModelSerializer, self).to_representation(instance)\n for key, value in ret.items():\n method = getattr(self, 'transform_' + key, None)\n if method is not None:\n ret[key] = method(value)\n return ret Differences between ModelSerializer validation and ModelForm. This change also means that we no longer use the .full_clean() method on model instances, but instead perform all validation explicitly on the serializer. This gives a cleaner separation, and ensures that there's no automatic validation behavior on ModelSerializer classes that can't also be easily replicated on regular Serializer classes. For the most part this change should be transparent. Field validation and uniqueness checks will still be run as normal, but the implementation is a little different. The one difference that you do need to note is that the .clean() method will not be called as part of serializer validation, as it would be if using a ModelForm . Use the serializer .validate() method to perform a final validation step on incoming data where required. There may be some cases where you really do need to keep validation logic in the model .clean() method, and cannot instead separate it into the serializer .validate() . You can do so by explicitly instantiating a model instance in the .validate() method. def validate(self, attrs):\n instance = ExampleModel(**attrs)\n instance.clean()\n return attrs Again, you really should look at properly separating the validation logic out of the model method if possible, but the above might be useful in some backwards compatibility cases, or for an easy migration path. Writable nested serialization. REST framework 2.x attempted to automatically support writable nested serialization, but the behavior was complex and non-obvious. Attempting to automatically handle these case is problematic: There can be complex dependencies involved in order of saving multiple related model instances. It's unclear what behavior the user should expect when related models are passed None data. It's unclear how the user should expect to-many relationships to handle updates, creations and deletions of multiple records. Using the depth option on ModelSerializer will now create read-only nested serializers by default. If you try to use a writable nested serializer without writing a custom create() and/or update() method you'll see an assertion error when you attempt to save the serializer. For example: class ProfileSerializer(serializers.ModelSerializer): class Meta: model = Profile fields = ('address', 'phone') class UserSerializer(serializers.ModelSerializer): profile = ProfileSerializer() class Meta: model = User fields = ('username', 'email', 'profile') data = { 'username': 'lizzy', 'email': 'lizzy@example.com', 'profile': {'address': '123 Acacia Avenue', 'phone': '01273 100200'} } serializer = UserSerializer(data=data) serializer.save()\nAssertionError: The `.create()` method does not support nested writable fields by default. Write an explicit `.create()` method for serializer `UserSerializer`, or set `read_only=True` on nested serializer fields. To use writable nested serialization you'll want to declare a nested field on the serializer class, and write the create() and/or update() methods explicitly. class UserSerializer(serializers.ModelSerializer):\n profile = ProfileSerializer()\n\n class Meta:\n model = User\n fields = ('username', 'email', 'profile')\n\n def create(self, validated_data):\n profile_data = validated_data.pop('profile')\n user = User.objects.create(**validated_data)\n Profile.objects.create(user=user, **profile_data)\n return user The single-step object creation makes this far simpler and more obvious than the previous .restore_object() behavior. Printable serializer representations. Serializer instances now support a printable representation that allows you to inspect the fields present on the instance. For instance, given the following example model: class LocationRating(models.Model):\n location = models.CharField(max_length=100)\n rating = models.IntegerField()\n created_by = models.ForeignKey(User) Let's create a simple ModelSerializer class corresponding to the LocationRating model. class LocationRatingSerializer(serializer.ModelSerializer):\n class Meta:\n model = LocationRating We can now inspect the serializer representation in the Django shell, using python manage.py shell ... serializer = LocationRatingSerializer() print(serializer) # Or use `print serializer` in Python 2.x\nLocationRatingSerializer():\n id = IntegerField(label='ID', read_only=True)\n location = CharField(max_length=100)\n rating = IntegerField()\n created_by = PrimaryKeyRelatedField(queryset=User.objects.all()) The extra_kwargs option. The write_only_fields option on ModelSerializer has been moved to PendingDeprecation and replaced with a more generic extra_kwargs . class MySerializer(serializer.ModelSerializer):\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'is_admin': {'write_only': True}\n } Alternatively, specify the field explicitly on the serializer class: class MySerializer(serializer.ModelSerializer):\n is_admin = serializers.BooleanField(write_only=True)\n\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin') The read_only_fields option remains as a convenient shortcut for the more common case. Changes to HyperlinkedModelSerializer . The view_name and lookup_field options have been moved to PendingDeprecation . They are no longer required, as you can use the extra_kwargs argument instead: class MySerializer(serializer.HyperlinkedModelSerializer):\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'url': {'lookup_field': 'uuid'}\n } Alternatively, specify the field explicitly on the serializer class: class MySerializer(serializer.HyperlinkedModelSerializer):\n url = serializers.HyperlinkedIdentityField(\n view_name='mymodel-detail',\n lookup_field='uuid'\n )\n\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin') Fields for model methods and properties. With ModelSerializer you can now specify field names in the fields option that refer to model methods or properties. For example, suppose you have the following model: class Invitation(models.Model):\n created = models.DateTimeField()\n to_email = models.EmailField()\n message = models.CharField(max_length=1000)\n\n def expiry_date(self):\n return self.created + datetime.timedelta(days=30) You can include expiry_date as a field option on a ModelSerializer class. class InvitationSerializer(serializers.ModelSerializer):\n class Meta:\n model = Invitation\n fields = ('to_email', 'message', 'expiry_date') These fields will be mapped to serializers.ReadOnlyField() instances. serializer = InvitationSerializer() print repr(serializer)\nInvitationSerializer():\n to_email = EmailField(max_length=75)\n message = CharField(max_length=1000)\n expiry_date = ReadOnlyField() The ListSerializer class. The ListSerializer class has now been added, and allows you to create base serializer classes for only accepting multiple inputs. class MultipleUserSerializer(ListSerializer):\n child = UserSerializer() You can also still use the many=True argument to serializer classes. It's worth noting that many=True argument transparently creates a ListSerializer instance, allowing the validation logic for list and non-list data to be cleanly separated in the REST framework codebase. You will typically want to continue to use the existing many=True flag rather than declaring ListSerializer classes explicitly, but declaring the classes explicitly can be useful if you need to write custom create or update methods for bulk updates, or provide for other custom behavior. See also the new ListField class, which validates input in the same way, but does not include the serializer interfaces of .is_valid() , .data , .save() and so on. The BaseSerializer class. REST framework now includes a simple BaseSerializer class that can be used to easily support alternative serialization and deserialization styles. This class implements the same basic API as the Serializer class: .data - Returns the outgoing primitive representation. .is_valid() - Deserializes and validates incoming data. .validated_data - Returns the validated incoming data. .errors - Returns an errors during validation. .save() - Persists the validated data into an object instance. There are four methods that can be overridden, depending on what functionality you want the serializer class to support: .to_representation() - Override this to support serialization, for read operations. .to_internal_value() - Override this to support deserialization, for write operations. .create() and .update() - Override either or both of these to support saving instances. Because this class provides the same interface as the Serializer class, you can use it with the existing generic class based views exactly as you would for a regular Serializer or ModelSerializer . The only difference you'll notice when doing so is the BaseSerializer classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input. Read-only BaseSerializer classes. To implement a read-only serializer using the BaseSerializer class, we just need to override the .to_representation() method. Let's take a look at an example using a simple Django model: class HighScore(models.Model):\n created = models.DateTimeField(auto_now_add=True)\n player_name = models.CharField(max_length=10)\n score = models.IntegerField() It's simple to create a read-only serializer for converting HighScore instances into primitive data types. class HighScoreSerializer(serializers.BaseSerializer):\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n } We can now use this class to serialize single HighScore instances: @api_view(['GET'])\ndef high_score(request, pk):\n instance = HighScore.objects.get(pk=pk)\n serializer = HighScoreSerializer(instance)\n return Response(serializer.data) Or use it to serialize multiple instances: @api_view(['GET'])\ndef all_high_scores(request):\n queryset = HighScore.objects.order_by('-score')\n serializer = HighScoreSerializer(queryset, many=True)\n return Response(serializer.data) Read-write BaseSerializer classes. To create a read-write serializer we first need to implement a .to_internal_value() method. This method returns the validated values that will be used to construct the object instance, and may raise a ValidationError if the supplied data is in an incorrect format. Once you've implemented .to_internal_value() , the basic validation API will be available on the serializer, and you will be able to use .is_valid() , .validated_data and .errors . If you want to also support .save() you'll need to also implement either or both of the .create() and .update() methods. Here's a complete example of our previous HighScoreSerializer , that's been updated to support both read and write operations. class HighScoreSerializer(serializers.BaseSerializer):\n def to_internal_value(self, data):\n score = data.get('score')\n player_name = data.get('player_name')\n\n # Perform the data validation.\n if not score:\n raise ValidationError({\n 'score': 'This field is required.'\n })\n if not player_name:\n raise ValidationError({\n 'player_name': 'This field is required.'\n })\n if len(player_name) 10:\n raise ValidationError({\n 'player_name': 'May not be more than 10 characters.'\n })\n\n # Return the validated values. This will be available as\n # the `.validated_data` property.\n return {\n 'score': int(score),\n 'player_name': player_name\n }\n\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n def create(self, validated_data):\n return HighScore.objects.create(**validated_data) Creating new generic serializers with BaseSerializer . The BaseSerializer class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends. The following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations. class ObjectSerializer(serializers.BaseSerializer):\n \"\"\"\n A read-only serializer that coerces arbitrary complex objects\n into primitive representations.\n \"\"\"\n def to_representation(self, obj):\n for attribute_name in dir(obj):\n attribute = getattr(obj, attribute_name)\n if attribute_name('_'):\n # Ignore private attributes.\n pass\n elif hasattr(attribute, '__call__'):\n # Ignore methods and other callables.\n pass\n elif isinstance(attribute, (str, int, bool, float, type(None))):\n # Primitive types can be passed through unmodified.\n output[attribute_name] = attribute\n elif isinstance(attribute, list):\n # Recursively deal with items in lists.\n output[attribute_name] = [\n self.to_representation(item) for item in attribute\n ]\n elif isinstance(attribute, dict):\n # Recursively deal with items in dictionaries.\n output[attribute_name] = {\n str(key): self.to_representation(value)\n for key, value in attribute.items()\n }\n else:\n # Force anything else to its string representation.\n output[attribute_name] = str(attribute)",
+ "text": "Single-step object creation. Previously the serializers used a two-step object creation, as follows: Validating the data would create an object instance. This instance would be available as serializer.object . Calling serializer.save() would then save the object instance to the database. This style is in-line with how the ModelForm class works in Django, but is problematic for a number of reasons: Some data, such as many-to-many relationships, cannot be added to the object instance until after it has been saved. This type of data needed to be hidden in some undocumented state on the object instance, or kept as state on the serializer instance so that it could be used when .save() is called. Instantiating model instances directly means that you cannot use model manager classes for instance creation, e.g. ExampleModel.objects.create(...) . Manager classes are an excellent layer at which to enforce business logic and application-level data constraints. The two step process makes it unclear where to put deserialization logic. For example, should extra attributes such as the current user get added to the instance during object creation or during object save? We now use single-step object creation, like so: Validating the data makes the cleaned data available as serializer.validated_data . Calling serializer.save() then saves and returns the new object instance. The resulting API changes are further detailed below. .update() methods. The .create() and The .restore_object() method is now removed, and we instead have two separate methods, .create() and .update() . These methods work slightly different to the previous .restore_object() . When using the .create() and .update() methods you should both create and save the object instance. This is in contrast to the previous .restore_object() behavior that would instantiate the object but not save it. These methods also replace the optional .save_object() method, which no longer exists. The following example from the tutorial previously used restore_object() to handle both creating and updating object instances. def restore_object(self, attrs, instance=None):\n if instance:\n # Update existing instance\n instance.title = attrs.get('title', instance.title)\n instance.code = attrs.get('code', instance.code)\n instance.linenos = attrs.get('linenos', instance.linenos)\n instance.language = attrs.get('language', instance.language)\n instance.style = attrs.get('style', instance.style)\n return instance\n\n # Create new instance\n return Snippet(**attrs) This would now be split out into two separate methods. def update(self, instance, validated_data):\n instance.title = validated_data.get('title', instance.title)\n instance.code = validated_data.get('code', instance.code)\n instance.linenos = validated_data.get('linenos', instance.linenos)\n instance.language = validated_data.get('language', instance.language)\n instance.style = validated_data.get('style', instance.style)\n instance.save()\n return instance\n\ndef create(self, validated_data):\n return Snippet.objects.create(**validated_data) Note that these methods should return the newly created object instance. .object . Use .validated_data instead of You must now use the .validated_data attribute if you need to inspect the data before saving, rather than using the .object attribute, which no longer exists. For example the following code is no longer valid : if serializer.is_valid():\n name = serializer.object.name # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.object.user = request.user # Include the user when saving.\n serializer.save() Instead of using .object to inspect a partially constructed instance, you would now use .validated_data to inspect the cleaned incoming values. Also you can't set extra attributes on the instance directly, but instead pass them to the .save() method as keyword arguments. The corresponding code would now look like this: if serializer.is_valid():\n name = serializer.validated_data['name'] # Inspect validated field data.\n logging.info('Creating ticket \"%s\"' % name)\n serializer.save(user=request.user) # Include the user when saving. Using .is_valid(raise_exception=True) The .is_valid() method now takes an optional boolean flag, raise_exception . Calling .is_valid(raise_exception=True) will cause a ValidationError to be raised if the serializer data contains validation errors. This error will be handled by REST framework's default exception handler, allowing you to remove error response handling from your view code. The handling and formatting of error responses may be altered globally by using the EXCEPTION_HANDLER settings key. This change also means it's now possible to alter the style of error responses used by the built-in generic views, without having to include mixin classes or other overrides. Using serializers.ValidationError . Previously serializers.ValidationError error was simply a synonym for django.core.exceptions.ValidationError . This has now been altered so that it inherits from the standard APIException base class. The reason behind this is that Django's ValidationError class is intended for use with HTML forms and its API makes using it slightly awkward with nested validation errors that can occur in serializers. For most users this change shouldn't require any updates to your codebase, but it is worth ensuring that whenever raising validation errors you should prefer using the serializers.ValidationError exception class, and not Django's built-in exception. We strongly recommend that you use the namespaced import style of import serializers and not from serializers import ValidationError in order to avoid any potential confusion. Change to validate_ field_name . The validate_ field_name method hooks that can be attached to serializer classes change their signature slightly and return type. Previously these would take a dictionary of all incoming data, and a key representing the field name, and would return a dictionary including the validated data for that field: def validate_score(self, attrs, source):\n if attrs['score'] % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return attrs This is now simplified slightly, and the method hooks simply take the value to be validated, and return the validated value. def validate_score(self, value):\n if value % 10 != 0:\n raise serializers.ValidationError('This field should be a multiple of ten.')\n return value Any ad-hoc validation that applies to more than one field should go in the .validate(self, attrs) method as usual. Because .validate_ field_name would previously accept the complete dictionary of attributes, it could be used to validate a field depending on the input in another field. Now if you need to do this you should use .validate() instead. You can either return non_field_errors from the validate method by raising a simple ValidationError def validate(self, attrs):\n # serializer.errors == {'non_field_errors': ['A non field error']}\n raise serializers.ValidationError('A non field error') Alternatively if you want the errors to be against a specific field, use a dictionary of when instantiating the ValidationError , like so: def validate(self, attrs):\n # serializer.errors == {'my_field': ['A field error']}\n raise serializers.ValidationError({'my_field': 'A field error'}) This ensures you can still write validation that compares all the input fields, but that marks the error against a particular field. Removal of transform_ field_name . The under-used transform_ field_name on serializer classes is no longer provided. Instead you should just override to_representation() if you need to apply any modifications to the representation style. For example: def to_representation(self, instance):\n ret = super(UserSerializer, self).to_representation(instance)\n ret['username'] = ret['username'].lower()\n return ret Dropping the extra point of API means there's now only one right way to do things. This helps with repetition and reinforcement of the core API, rather than having multiple differing approaches. If you absolutely need to preserve transform_ field_name behavior, for example, in order to provide a simpler 2.x to 3.0 upgrade, you can use a mixin, or serializer base class that add the behavior back in. For example: class BaseModelSerializer(ModelSerializer):\n \"\"\"\n A custom ModelSerializer class that preserves 2.x style `transform_ field_name ` behavior.\n \"\"\"\n def to_representation(self, instance):\n ret = super(BaseModelSerializer, self).to_representation(instance)\n for key, value in ret.items():\n method = getattr(self, 'transform_' + key, None)\n if method is not None:\n ret[key] = method(value)\n return ret Differences between ModelSerializer validation and ModelForm. This change also means that we no longer use the .full_clean() method on model instances, but instead perform all validation explicitly on the serializer. This gives a cleaner separation, and ensures that there's no automatic validation behavior on ModelSerializer classes that can't also be easily replicated on regular Serializer classes. For the most part this change should be transparent. Field validation and uniqueness checks will still be run as normal, but the implementation is a little different. The one difference that you do need to note is that the .clean() method will not be called as part of serializer validation, as it would be if using a ModelForm . Use the serializer .validate() method to perform a final validation step on incoming data where required. There may be some cases where you really do need to keep validation logic in the model .clean() method, and cannot instead separate it into the serializer .validate() . You can do so by explicitly instantiating a model instance in the .validate() method. def validate(self, attrs):\n instance = ExampleModel(**attrs)\n instance.clean()\n return attrs Again, you really should look at properly separating the validation logic out of the model method if possible, but the above might be useful in some backwards compatibility cases, or for an easy migration path. Writable nested serialization. REST framework 2.x attempted to automatically support writable nested serialization, but the behavior was complex and non-obvious. Attempting to automatically handle these case is problematic: There can be complex dependencies involved in order of saving multiple related model instances. It's unclear what behavior the user should expect when related models are passed None data. It's unclear how the user should expect to-many relationships to handle updates, creations and deletions of multiple records. Using the depth option on ModelSerializer will now create read-only nested serializers by default. If you try to use a writable nested serializer without writing a custom create() and/or update() method you'll see an assertion error when you attempt to save the serializer. For example: class ProfileSerializer(serializers.ModelSerializer): class Meta: model = Profile fields = ('address', 'phone') class UserSerializer(serializers.ModelSerializer): profile = ProfileSerializer() class Meta: model = User fields = ('username', 'email', 'profile') data = { 'username': 'lizzy', 'email': 'lizzy@example.com', 'profile': {'address': '123 Acacia Avenue', 'phone': '01273 100200'} } serializer = UserSerializer(data=data) serializer.save()\nAssertionError: The `.create()` method does not support nested writable fields by default. Write an explicit `.create()` method for serializer `UserSerializer`, or set `read_only=True` on nested serializer fields. To use writable nested serialization you'll want to declare a nested field on the serializer class, and write the create() and/or update() methods explicitly. class UserSerializer(serializers.ModelSerializer):\n profile = ProfileSerializer()\n\n class Meta:\n model = User\n fields = ('username', 'email', 'profile')\n\n def create(self, validated_data):\n profile_data = validated_data.pop('profile')\n user = User.objects.create(**validated_data)\n Profile.objects.create(user=user, **profile_data)\n return user The single-step object creation makes this far simpler and more obvious than the previous .restore_object() behavior. Printable serializer representations. Serializer instances now support a printable representation that allows you to inspect the fields present on the instance. For instance, given the following example model: class LocationRating(models.Model):\n location = models.CharField(max_length=100)\n rating = models.IntegerField()\n created_by = models.ForeignKey(User) Let's create a simple ModelSerializer class corresponding to the LocationRating model. class LocationRatingSerializer(serializer.ModelSerializer):\n class Meta:\n model = LocationRating We can now inspect the serializer representation in the Django shell, using python manage.py shell ... serializer = LocationRatingSerializer() print(serializer) # Or use `print serializer` in Python 2.x\nLocationRatingSerializer():\n id = IntegerField(label='ID', read_only=True)\n location = CharField(max_length=100)\n rating = IntegerField()\n created_by = PrimaryKeyRelatedField(queryset=User.objects.all()) The extra_kwargs option. The write_only_fields option on ModelSerializer has been moved to PendingDeprecation and replaced with a more generic extra_kwargs . class MySerializer(serializer.ModelSerializer):\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'is_admin': {'write_only': True}\n } Alternatively, specify the field explicitly on the serializer class: class MySerializer(serializer.ModelSerializer):\n is_admin = serializers.BooleanField(write_only=True)\n\n class Meta:\n model = MyModel\n fields = ('id', 'email', 'notes', 'is_admin') The read_only_fields option remains as a convenient shortcut for the more common case. Changes to HyperlinkedModelSerializer . The view_name and lookup_field options have been moved to PendingDeprecation . They are no longer required, as you can use the extra_kwargs argument instead: class MySerializer(serializer.HyperlinkedModelSerializer):\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin')\n extra_kwargs = {\n 'url': {'lookup_field': 'uuid'}\n } Alternatively, specify the field explicitly on the serializer class: class MySerializer(serializer.HyperlinkedModelSerializer):\n url = serializers.HyperlinkedIdentityField(\n view_name='mymodel-detail',\n lookup_field='uuid'\n )\n\n class Meta:\n model = MyModel\n fields = ('url', 'email', 'notes', 'is_admin') Fields for model methods and properties. With ModelSerializer you can now specify field names in the fields option that refer to model methods or properties. For example, suppose you have the following model: class Invitation(models.Model):\n created = models.DateTimeField()\n to_email = models.EmailField()\n message = models.CharField(max_length=1000)\n\n def expiry_date(self):\n return self.created + datetime.timedelta(days=30) You can include expiry_date as a field option on a ModelSerializer class. class InvitationSerializer(serializers.ModelSerializer):\n class Meta:\n model = Invitation\n fields = ('to_email', 'message', 'expiry_date') These fields will be mapped to serializers.ReadOnlyField() instances. serializer = InvitationSerializer() print repr(serializer)\nInvitationSerializer():\n to_email = EmailField(max_length=75)\n message = CharField(max_length=1000)\n expiry_date = ReadOnlyField() The ListSerializer class. The ListSerializer class has now been added, and allows you to create base serializer classes for only accepting multiple inputs. class MultipleUserSerializer(ListSerializer):\n child = UserSerializer() You can also still use the many=True argument to serializer classes. It's worth noting that many=True argument transparently creates a ListSerializer instance, allowing the validation logic for list and non-list data to be cleanly separated in the REST framework codebase. You will typically want to continue to use the existing many=True flag rather than declaring ListSerializer classes explicitly, but declaring the classes explicitly can be useful if you need to write custom create or update methods for bulk updates, or provide for other custom behavior. See also the new ListField class, which validates input in the same way, but does not include the serializer interfaces of .is_valid() , .data , .save() and so on. The BaseSerializer class. REST framework now includes a simple BaseSerializer class that can be used to easily support alternative serialization and deserialization styles. This class implements the same basic API as the Serializer class: .data - Returns the outgoing primitive representation. .is_valid() - Deserializes and validates incoming data. .validated_data - Returns the validated incoming data. .errors - Returns an errors during validation. .save() - Persists the validated data into an object instance. There are four methods that can be overridden, depending on what functionality you want the serializer class to support: .to_representation() - Override this to support serialization, for read operations. .to_internal_value() - Override this to support deserialization, for write operations. .create() and .update() - Override either or both of these to support saving instances. Because this class provides the same interface as the Serializer class, you can use it with the existing generic class based views exactly as you would for a regular Serializer or ModelSerializer . The only difference you'll notice when doing so is the BaseSerializer classes will not generate HTML forms in the browsable API. This is because the data they return does not include all the field information that would allow each field to be rendered into a suitable HTML input. Read-only BaseSerializer classes. To implement a read-only serializer using the BaseSerializer class, we just need to override the .to_representation() method. Let's take a look at an example using a simple Django model: class HighScore(models.Model):\n created = models.DateTimeField(auto_now_add=True)\n player_name = models.CharField(max_length=10)\n score = models.IntegerField() It's simple to create a read-only serializer for converting HighScore instances into primitive data types. class HighScoreSerializer(serializers.BaseSerializer):\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n } We can now use this class to serialize single HighScore instances: @api_view(['GET'])\ndef high_score(request, pk):\n instance = HighScore.objects.get(pk=pk)\n serializer = HighScoreSerializer(instance)\n return Response(serializer.data) Or use it to serialize multiple instances: @api_view(['GET'])\ndef all_high_scores(request):\n queryset = HighScore.objects.order_by('-score')\n serializer = HighScoreSerializer(queryset, many=True)\n return Response(serializer.data) Read-write BaseSerializer classes. To create a read-write serializer we first need to implement a .to_internal_value() method. This method returns the validated values that will be used to construct the object instance, and may raise a ValidationError if the supplied data is in an incorrect format. Once you've implemented .to_internal_value() , the basic validation API will be available on the serializer, and you will be able to use .is_valid() , .validated_data and .errors . If you want to also support .save() you'll need to also implement either or both of the .create() and .update() methods. Here's a complete example of our previous HighScoreSerializer , that's been updated to support both read and write operations. class HighScoreSerializer(serializers.BaseSerializer):\n def to_internal_value(self, data):\n score = data.get('score')\n player_name = data.get('player_name')\n\n # Perform the data validation.\n if not score:\n raise ValidationError({\n 'score': 'This field is required.'\n })\n if not player_name:\n raise ValidationError({\n 'player_name': 'This field is required.'\n })\n if len(player_name) 10:\n raise ValidationError({\n 'player_name': 'May not be more than 10 characters.'\n })\n\n # Return the validated values. This will be available as\n # the `.validated_data` property.\n return {\n 'score': int(score),\n 'player_name': player_name\n }\n\n def to_representation(self, obj):\n return {\n 'score': obj.score,\n 'player_name': obj.player_name\n }\n\n def create(self, validated_data):\n return HighScore.objects.create(**validated_data) Creating new generic serializers with BaseSerializer . The BaseSerializer class is also useful if you want to implement new generic serializer classes for dealing with particular serialization styles, or for integrating with alternative storage backends. The following class is an example of a generic serializer that can handle coercing arbitrary objects into primitive representations. class ObjectSerializer(serializers.BaseSerializer):\n \"\"\"\n A read-only serializer that coerces arbitrary complex objects\n into primitive representations.\n \"\"\"\n def to_representation(self, obj):\n for attribute_name in dir(obj):\n attribute = getattr(obj, attribute_name)\n if attribute_name('_'):\n # Ignore private attributes.\n pass\n elif hasattr(attribute, '__call__'):\n # Ignore methods and other callables.\n pass\n elif isinstance(attribute, (str, int, bool, float, type(None))):\n # Primitive types can be passed through unmodified.\n output[attribute_name] = attribute\n elif isinstance(attribute, list):\n # Recursively deal with items in lists.\n output[attribute_name] = [\n self.to_representation(item) for item in attribute\n ]\n elif isinstance(attribute, dict):\n # Recursively deal with items in dictionaries.\n output[attribute_name] = {\n str(key): self.to_representation(value)\n for key, value in attribute.items()\n }\n else:\n # Force anything else to its string representation.\n output[attribute_name] = str(attribute)",
"title": "Serializers"
},
{
"location": "/topics/3.0-announcement/#serializer-fields",
- "text": "The Field and ReadOnly field classes. There are some minor tweaks to the field base classes. Previously we had these two base classes: Field as the base class for read-only fields. A default implementation was included for serializing data. WritableField as the base class for read-write fields. We now use the following: Field is the base class for all fields. It does not include any default implementation for either serializing or deserializing data. ReadOnlyField is a concrete implementation for read-only fields that simply returns the attribute value without modification. The required , allow_null , allow_blank and default arguments. REST framework now has more explicit and clear control over validating empty values for fields. Previously the meaning of the required=False keyword argument was underspecified. In practice its use meant that a field could either be not included in the input, or it could be included, but be None or the empty string. We now have a better separation, with separate required , allow_null and allow_blank arguments. The following set of arguments are used to control validation of empty values: required=False : The value does not need to be present in the input, and will not be passed to .create() or .update() if it is not seen. default= value : The value does not need to be present in the input, and a default value will be passed to .create() or .update() if it is not seen. allow_null=True : None is a valid input. allow_blank=True : '' is valid input. For CharField and subclasses only. Typically you'll want to use required=False if the corresponding model field has a default value, and additionally set either allow_null=True or allow_blank=True if required. The default argument is also available and always implies that the field is not required to be in the input. It is unnecessary to use the required argument when a default is specified, and doing so will result in an error. Coercing output types. The previous field implementations did not forcibly coerce returned values into the correct type in many cases. For example, an IntegerField would return a string output if the attribute value was a string. We now more strictly coerce to the correct return type, leading to more constrained and expected behavior. Removal of .validate() . The .validate() method is now removed from field classes. This method was in any case undocumented and not public API. You should instead simply override to_internal_value() . class UppercaseCharField(serializers.CharField):\n def to_internal_value(self, data):\n value = super(UppercaseCharField, self).to_internal_value(data)\n if value != value.upper():\n raise serializers.ValidationError('The input should be uppercase only.')\n return value Previously validation errors could be raised in either .to_native() or .validate() , making it non-obvious which should be used. Providing only a single point of API ensures more repetition and reinforcement of the core API. The ListField class. The ListField class has now been added. This field validates list input. It takes a child keyword argument which is used to specify the field used to validate each item in the list. For example: scores = ListField(child=IntegerField(min_value=0, max_value=100)) You can also use a declarative style to create new subclasses of ListField , like this: class ScoresField(ListField):\n child = IntegerField(min_value=0, max_value=100) We can now use the ScoresField class inside another serializer: scores = ScoresField() See also the new ListSerializer class, which validates input in the same way, but also includes the serializer interfaces of .is_valid() , .data , .save() and so on. The ChoiceField class may now accept a flat list. The ChoiceField class may now accept a list of choices in addition to the existing style of using a list of pairs of (name, display_value) . The following is now valid: color = ChoiceField(choices=['red', 'green', 'blue']) The MultipleChoiceField class. The MultipleChoiceField class has been added. This field acts like ChoiceField , but returns a set, which may include none, one or many of the valid choices. Changes to the custom field API. The from_native(self, value) and to_native(self, data) method names have been replaced with the more obviously named to_internal_value(self, data) and to_representation(self, value) . The field_from_native() and field_to_native() methods are removed. Previously you could use these methods if you wanted to customise the behaviour in a way that did not simply lookup the field value from the object. For example... def field_to_native(self, obj, field_name):\n \"\"\"A custom read-only field that returns the class name.\"\"\"\n return obj.__class__.__name__ Now if you need to access the entire object you'll instead need to override one or both of the following: Use get_attribute to modify the attribute value passed to to_representation() . Use get_value to modify the data value passed to_internal_value() . For example: def get_attribute(self, obj):\n # Pass the entire object through to `to_representation()`,\n # instead of the standard attribute lookup.\n return obj\n\ndef to_representation(self, value):\n return value.__class__.__name__ Explicit queryset required on relational fields. Previously relational fields that were explicitly declared on a serializer class could omit the queryset argument if (and only if) they were declared on a ModelSerializer . This code would be valid in 2.4.3 : class AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n class Meta:\n model = Account However this code would not be valid in 3.0 : # Missing `queryset`\nclass AccountSerializer(serializers.Serializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n def restore_object(self, attrs, instance=None):\n # ... The queryset argument is now always required for writable relational fields.\nThis removes some magic and makes it easier and more obvious to move between implicit ModelSerializer classes and explicit Serializer classes. class AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(\n slug_field='name',\n queryset=Organization.objects.all()\n )\n\n class Meta:\n model = Account The queryset argument is only ever required for writable fields, and is not required or valid for fields with read_only=True . Optional argument to SerializerMethodField . The argument to SerializerMethodField is now optional, and defaults to get_ field_name . For example the following is valid: class AccountSerializer(serializers.Serializer):\n # `method_name='get_billing_details'` by default.\n billing_details = serializers.SerializerMethodField()\n\n def get_billing_details(self, account):\n return calculate_billing(account) In order to ensure a consistent code style an assertion error will be raised if you include a redundant method name argument that matches the default method name. For example, the following code will raise an error : billing_details = serializers.SerializerMethodField('get_billing_details') Enforcing consistent source usage. I've see several codebases that unnecessarily include the source argument, setting it to the same value as the field name. This usage is redundant and confusing, making it less obvious that source is usually not required. The following usage will now raise an error : email = serializers.EmailField(source='email') The UniqueValidator and UniqueTogetherValidator classes. REST framework now provides new validators that allow you to ensure field uniqueness, while still using a completely explicit Serializer class instead of using ModelSerializer . The UniqueValidator should be applied to a serializer field, and takes a single queryset argument. from rest_framework import serializers\nfrom rest_framework.validators import UniqueValidator\n\nclass OrganizationSerializer(serializers.Serializer):\n url = serializers.HyperlinkedIdentityField(view_name='organization_detail')\n created = serializers.DateTimeField(read_only=True)\n name = serializers.CharField(\n max_length=100,\n validators=UniqueValidator(queryset=Organization.objects.all())\n ) The UniqueTogetherValidator should be applied to a serializer, and takes a queryset argument and a fields argument which should be a list or tuple of field names. class RaceResultSerializer(serializers.Serializer):\n category = serializers.ChoiceField(['5k', '10k'])\n position = serializers.IntegerField()\n name = serializers.CharField(max_length=100)\n\n class Meta:\n validators = [UniqueTogetherValidator(\n queryset=RaceResult.objects.all(),\n fields=('category', 'position')\n )] The UniqueForDateValidator classes. REST framework also now includes explicit validator classes for validating the unique_for_date , unique_for_month , and unique_for_year model field constraints. These are used internally instead of calling into Model.full_clean() . These classes are documented in the Validators section of the documentation.",
+ "text": "ReadOnly field classes. The Field and There are some minor tweaks to the field base classes. Previously we had these two base classes: Field as the base class for read-only fields. A default implementation was included for serializing data. WritableField as the base class for read-write fields. We now use the following: Field is the base class for all fields. It does not include any default implementation for either serializing or deserializing data. ReadOnlyField is a concrete implementation for read-only fields that simply returns the attribute value without modification. allow_null , default arguments. The required , allow_blank and REST framework now has more explicit and clear control over validating empty values for fields. Previously the meaning of the required=False keyword argument was underspecified. In practice its use meant that a field could either be not included in the input, or it could be included, but be None or the empty string. We now have a better separation, with separate required , allow_null and allow_blank arguments. The following set of arguments are used to control validation of empty values: required=False : The value does not need to be present in the input, and will not be passed to .create() or .update() if it is not seen. default= value : The value does not need to be present in the input, and a default value will be passed to .create() or .update() if it is not seen. allow_null=True : None is a valid input. allow_blank=True : '' is valid input. For CharField and subclasses only. Typically you'll want to use required=False if the corresponding model field has a default value, and additionally set either allow_null=True or allow_blank=True if required. The default argument is also available and always implies that the field is not required to be in the input. It is unnecessary to use the required argument when a default is specified, and doing so will result in an error. Coercing output types. The previous field implementations did not forcibly coerce returned values into the correct type in many cases. For example, an IntegerField would return a string output if the attribute value was a string. We now more strictly coerce to the correct return type, leading to more constrained and expected behavior. Removal of .validate() . The .validate() method is now removed from field classes. This method was in any case undocumented and not public API. You should instead simply override to_internal_value() . class UppercaseCharField(serializers.CharField):\n def to_internal_value(self, data):\n value = super(UppercaseCharField, self).to_internal_value(data)\n if value != value.upper():\n raise serializers.ValidationError('The input should be uppercase only.')\n return value Previously validation errors could be raised in either .to_native() or .validate() , making it non-obvious which should be used. Providing only a single point of API ensures more repetition and reinforcement of the core API. The ListField class. The ListField class has now been added. This field validates list input. It takes a child keyword argument which is used to specify the field used to validate each item in the list. For example: scores = ListField(child=IntegerField(min_value=0, max_value=100)) You can also use a declarative style to create new subclasses of ListField , like this: class ScoresField(ListField):\n child = IntegerField(min_value=0, max_value=100) We can now use the ScoresField class inside another serializer: scores = ScoresField() See also the new ListSerializer class, which validates input in the same way, but also includes the serializer interfaces of .is_valid() , .data , .save() and so on. The ChoiceField class may now accept a flat list. The ChoiceField class may now accept a list of choices in addition to the existing style of using a list of pairs of (name, display_value) . The following is now valid: color = ChoiceField(choices=['red', 'green', 'blue']) The MultipleChoiceField class. The MultipleChoiceField class has been added. This field acts like ChoiceField , but returns a set, which may include none, one or many of the valid choices. Changes to the custom field API. The from_native(self, value) and to_native(self, data) method names have been replaced with the more obviously named to_internal_value(self, data) and to_representation(self, value) . The field_from_native() and field_to_native() methods are removed. Previously you could use these methods if you wanted to customise the behaviour in a way that did not simply lookup the field value from the object. For example... def field_to_native(self, obj, field_name):\n \"\"\"A custom read-only field that returns the class name.\"\"\"\n return obj.__class__.__name__ Now if you need to access the entire object you'll instead need to override one or both of the following: Use get_attribute to modify the attribute value passed to to_representation() . Use get_value to modify the data value passed to_internal_value() . For example: def get_attribute(self, obj):\n # Pass the entire object through to `to_representation()`,\n # instead of the standard attribute lookup.\n return obj\n\ndef to_representation(self, value):\n return value.__class__.__name__ Explicit queryset required on relational fields. Previously relational fields that were explicitly declared on a serializer class could omit the queryset argument if (and only if) they were declared on a ModelSerializer . This code would be valid in 2.4.3 : class AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n class Meta:\n model = Account However this code would not be valid in 3.0 : # Missing `queryset`\nclass AccountSerializer(serializers.Serializer):\n organizations = serializers.SlugRelatedField(slug_field='name')\n\n def restore_object(self, attrs, instance=None):\n # ... The queryset argument is now always required for writable relational fields.\nThis removes some magic and makes it easier and more obvious to move between implicit ModelSerializer classes and explicit Serializer classes. class AccountSerializer(serializers.ModelSerializer):\n organizations = serializers.SlugRelatedField(\n slug_field='name',\n queryset=Organization.objects.all()\n )\n\n class Meta:\n model = Account The queryset argument is only ever required for writable fields, and is not required or valid for fields with read_only=True . Optional argument to SerializerMethodField . The argument to SerializerMethodField is now optional, and defaults to get_ field_name . For example the following is valid: class AccountSerializer(serializers.Serializer):\n # `method_name='get_billing_details'` by default.\n billing_details = serializers.SerializerMethodField()\n\n def get_billing_details(self, account):\n return calculate_billing(account) In order to ensure a consistent code style an assertion error will be raised if you include a redundant method name argument that matches the default method name. For example, the following code will raise an error : billing_details = serializers.SerializerMethodField('get_billing_details') Enforcing consistent source usage. I've see several codebases that unnecessarily include the source argument, setting it to the same value as the field name. This usage is redundant and confusing, making it less obvious that source is usually not required. The following usage will now raise an error : email = serializers.EmailField(source='email') UniqueTogetherValidator classes. The UniqueValidator and REST framework now provides new validators that allow you to ensure field uniqueness, while still using a completely explicit Serializer class instead of using ModelSerializer . The UniqueValidator should be applied to a serializer field, and takes a single queryset argument. from rest_framework import serializers\nfrom rest_framework.validators import UniqueValidator\n\nclass OrganizationSerializer(serializers.Serializer):\n url = serializers.HyperlinkedIdentityField(view_name='organization_detail')\n created = serializers.DateTimeField(read_only=True)\n name = serializers.CharField(\n max_length=100,\n validators=UniqueValidator(queryset=Organization.objects.all())\n ) The UniqueTogetherValidator should be applied to a serializer, and takes a queryset argument and a fields argument which should be a list or tuple of field names. class RaceResultSerializer(serializers.Serializer):\n category = serializers.ChoiceField(['5k', '10k'])\n position = serializers.IntegerField()\n name = serializers.CharField(max_length=100)\n\n class Meta:\n validators = [UniqueTogetherValidator(\n queryset=RaceResult.objects.all(),\n fields=('category', 'position')\n )] The UniqueForDateValidator classes. REST framework also now includes explicit validator classes for validating the unique_for_date , unique_for_month , and unique_for_year model field constraints. These are used internally instead of calling into Model.full_clean() . These classes are documented in the Validators section of the documentation.",
"title": "Serializer fields"
},
{
@@ -3092,7 +3092,7 @@
},
{
"location": "/topics/release-notes/",
- "text": "Release Notes\n\n\n\n\nRelease Early, Release Often\n\n\n Eric S. Raymond, \nThe Cathedral and the Bazaar\n.\n\n\n\n\nVersioning\n\n\nMinor version numbers (0.0.x) are used for changes that are API compatible. You should be able to upgrade between minor point releases without any other code changes.\n\n\nMedium version numbers (0.x.0) may include API changes, in line with the \ndeprecation policy\n. You should read the release notes carefully before upgrading between medium point releases.\n\n\nMajor version numbers (x.0.0) are reserved for substantial project milestones.\n\n\nDeprecation policy\n\n\nREST framework releases follow a formal deprecation policy, which is in line with \nDjango's deprecation policy\n.\n\n\nThe timeline for deprecation of a feature present in version 1.0 would work as follows:\n\n\n\n\n\n\nVersion 1.1 would remain \nfully backwards compatible\n with 1.0, but would raise \nPendingDeprecationWarning\n warnings if you use the feature that are due to be deprecated. These warnings are \nsilent by default\n, but can be explicitly enabled when you're ready to start migrating any required changes. For example if you start running your tests using \npython -Wd manage.py test\n, you'll be warned of any API changes you need to make.\n\n\n\n\n\n\nVersion 1.2 would escalate these warnings to \nDeprecationWarning\n, which is loud by default.\n\n\n\n\n\n\nVersion 1.3 would remove the deprecated bits of API entirely.\n\n\n\n\n\n\nNote that in line with Django's policy, any parts of the framework not mentioned in the documentation should generally be considered private API, and may be subject to change.\n\n\nUpgrading\n\n\nTo upgrade Django REST framework to the latest version, use pip:\n\n\npip install -U djangorestframework\n\n\n\nYou can determine your currently installed version using \npip freeze\n:\n\n\npip freeze | grep djangorestframework\n\n\n\n\n\n3.3.x series\n\n\n3.3.1\n\n\nDate\n: \n4th November 2015\n.\n\n\n\n\nResolve parsing bug when accessing \nrequest.POST\n (\n#3592\n)\n\n\nCorrectly deal with \nto_field\n referring to primary key. (\n#3593\n)\n\n\nAllow filter HTML to render when no \nfilter_class\n is defined. (\n#3560\n)\n\n\nFix admin rendering issues. (\n#3564\n, \n#3556\n)\n\n\nFix issue with DecimalValidator. (\n#3568\n)\n\n\n\n\n3.3.0\n\n\nDate\n: \n28th October 2015\n.\n\n\n\n\nHTML controls for filters. (\n#3315\n)\n\n\nForms API. (\n#3475\n)\n\n\nAJAX browsable API. (\n#3410\n)\n\n\nAdded JSONField. (\n#3454\n)\n\n\nCorrectly map \nto_field\n when creating \nModelSerializer\n relational fields. (\n#3526\n)\n\n\nInclude keyword arguments when mapping \nFilePathField\n to a serializer field. (\n#3536\n)\n\n\nMap appropriate model \nerror_messages\n on \nModelSerializer\n uniqueness constraints. (\n#3435\n)\n\n\nInclude \nmax_length\n constraint for \nModelSerializer\n fields mapped from TextField. (\n#3509\n)\n\n\nAdded support for Django 1.9. (\n#3450\n, \n#3525\n)\n\n\nRemoved support for Django 1.5 \n 1.6. (\n#3421\n, \n#3429\n)\n\n\nRemoved 'south' migrations. (\n#3495\n)\n\n\n\n\n3.2.x series\n\n\n3.2.5\n\n\nDate\n: \n27th October 2015\n.\n\n\n\n\nEscape \nusername\n in optional logout tag. (\n#3550\n)\n\n\n\n\n3.2.4\n\n\nDate\n: \n21th September 2015\n.\n\n\n\n\nDon't error on missing \nViewSet.search_fields\n attribute. (\n#3324\n, \n#3323\n)\n\n\nFix \nallow_empty\n not working on serializers with \nmany=True\n. (\n#3361\n, \n#3364\n)\n\n\nLet \nDurationField\n accepts integers. (\n#3359\n)\n\n\nMulti-level dictionaries not supported in multipart requests. (\n#3314\n)\n\n\nFix \nListField\n truncation on HTTP PATCH (\n#3415\n, \n#2761\n)\n\n\n\n\n3.2.3\n\n\nDate\n: \n24th August 2015\n.\n\n\n\n\nAdded \nhtml_cutoff\n and \nhtml_cutoff_text\n for limiting select dropdowns. (\n#3313\n)\n\n\nAdded regex style to \nSearchFilter\n. (\n#3316\n)\n\n\nResolve issues with setting blank HTML fields. (\n#3318\n) (\n#3321\n)\n\n\nCorrectly display existing 'select multiple' values in browsable API forms. (\n#3290\n)\n\n\nResolve duplicated validation message for \nIPAddressField\n. ([#3249[gh3249]) (\n#3250\n)\n\n\nFix to ensure admin renderer continues to work when pagination is disabled. (\n#3275\n)\n\n\nResolve error with \nLimitOffsetPagination\n when count=0, offset=0. (\n#3303\n)\n\n\n\n\n3.2.2\n\n\nDate\n: \n13th August 2015\n.\n\n\n\n\nAdd \ndisplay_value()\n method for use when displaying relational field select inputs. (\n#3254\n)\n\n\nFix issue with \nBooleanField\n checkboxes incorrectly displaying as checked. (\n#3258\n)\n\n\nEnsure empty checkboxes properly set \nBooleanField\n to \nFalse\n in all cases. (\n#2776\n)\n\n\nAllow \nWSGIRequest.FILES\n property without raising incorrect deprecated error. (\n#3261\n)\n\n\nResolve issue with rendering nested serializers in forms. (\n#3260\n)\n\n\nRaise an error if user accidentally pass a serializer instance to a response, rather than data. (\n#3241\n)\n\n\n\n\n3.2.1\n\n\nDate\n: \n7th August 2015\n.\n\n\n\n\nFix for relational select widgets rendering without any choices. (\n#3237\n)\n\n\nFix for \n1\n, \n0\n rendering as \ntrue\n, \nfalse\n in the admin interface. \n#3227\n)\n\n\nFix for ListFields with single value in HTML form input. (\n#3238\n)\n\n\nAllow \nrequest.FILES\n for compat with Django's \nHTTPRequest\n class. (\n#3239\n)\n\n\n\n\n3.2.0\n\n\nDate\n: \n6th August 2015\n.\n\n\n\n\nAdd \nAdminRenderer\n. (\n#2926\n)\n\n\nAdd \nFilePathField\n. (\n#1854\n)\n\n\nAdd \nallow_empty\n to \nListField\n. (\n#2250\n)\n\n\nSupport django-guardian 1.3. (\n#3165\n)\n\n\nSupport grouped choices. (\n#3225\n)\n\n\nSupport error forms in browsable API. (\n#3024\n)\n\n\nAllow permission classes to customize the error message. (\n#2539\n)\n\n\nSupport \nsource=\nmethod\n on hyperlinked fields. (\n#2690\n)\n\n\nListField(allow_null=True)\n now allows null as the list value, not null items in the list. (\n#2766\n)\n\n\nManyToMany()\n maps to \nallow_empty=False\n, \nManyToMany(blank=True)\n maps to \nallow_empty=True\n. (\n#2804\n)\n\n\nSupport custom serialization styles for primary key fields. (\n#2789\n)\n\n\nOPTIONS\n requests support nested representations. (\n#2915\n)\n\n\nSet \nview.action == \"metadata\"\n for viewsets with \nOPTIONS\n requests. (\n#3115\n)\n\n\nSupport \nallow_blank\n on \nUUIDField\n. ([#3130][gh#3130])\n\n\nDo not display view docstrings with 401 or 403 response codes. (\n#3216\n)\n\n\nResolve Django 1.8 deprecation warnings. (\n#2886\n)\n\n\nFix for \nDecimalField\n validation. (\n#3139\n)\n\n\nFix behavior of \nallow_blank=False\n when used with \ntrim_whitespace=True\n. (\n#2712\n)\n\n\nFix issue with some field combinations incorrectly mapping to an invalid \nallow_blank\n argument. (\n#3011\n)\n\n\nFix for output representations with prefetches and modified querysets. (\n#2704\n, \n#2727\n)\n\n\nFix assertion error when CursorPagination is provided with certains invalid query parameters. (#2920)\ngh2920\n.\n\n\nFix \nUnicodeDecodeError\n when invalid characters included in header with \nTokenAuthentication\n. (\n#2928\n)\n\n\nFix transaction rollbacks with \n@non_atomic_requests\n decorator. (\n#3016\n)\n\n\nFix duplicate results issue with Oracle databases using \nSearchFilter\n. (\n#2935\n)\n\n\nFix checkbox alignment and rendering in browsable API forms. (\n#2783\n)\n\n\nFix for unsaved file objects which should use \n\"url\": null\n in the representation. (\n#2759\n)\n\n\nFix field value rendering in browsable API. (\n#2416\n)\n\n\nFix \nHStoreField\n to include \nallow_blank=True\n in \nDictField\n mapping. (\n#2659\n)\n\n\nNumerous other cleanups, improvements to error messaging, private API \n minor fixes.\n\n\n\n\n\n\n3.1.x series\n\n\n3.1.3\n\n\nDate\n: \n4th June 2015\n.\n\n\n\n\nAdd \nDurationField\n. (\n#2481\n, \n#2989\n)\n\n\nAdd \nformat\n argument to \nUUIDField\n. (\n#2788\n, \n#3000\n)\n\n\nMultipleChoiceField\n empties incorrectly on a partial update using multipart/form-data (\n#2993\n, \n#2894\n)\n\n\nFix a bug in options related to read-only \nRelatedField\n. (\n#2981\n, \n#2811\n)\n\n\nFix nested serializers with \nunique_together\n relations. (\n#2975\n)\n\n\nAllow unexpected values for \nChoiceField\n/\nMultipleChoiceField\n representations. (\n#2839\n, \n#2940\n)\n\n\nRollback the transaction on error if \nATOMIC_REQUESTS\n is set. (\n#2887\n, \n#2034\n)\n\n\nSet the action on a view when override_method regardless of its None-ness. (\n#2933\n)\n\n\nDecimalField\n accepts \n2E+2\n as 200 and validates decimal place correctly. (\n#2948\n, \n#2947\n)\n\n\nSupport basic authentication with custom \nUserModel\n that change \nusername\n. (\n#2952\n)\n\n\nIPAddressField\n improvements. (\n#2747\n, \n#2618\n, \n#3008\n)\n\n\nImprove \nDecimalField\n for easier subclassing. (\n#2695\n)\n\n\n\n\n3.1.2\n\n\nDate\n: \n13rd May 2015\n.\n\n\n\n\nDateField.to_representation\n can handle str and empty values. (\n#2656\n, \n#2687\n, \n#2869\n)\n\n\nUse default reason phrases from HTTP standard. (\n#2764\n, \n#2763\n)\n\n\nRaise error when \nModelSerializer\n used with abstract model. (\n#2757\n, \n#2630\n)\n\n\nHandle reversal of non-API view_name in \nHyperLinkedRelatedField\n (\n#2724\n, \n#2711\n)\n\n\nDont require pk strictly for related fields. (\n#2745\n, \n#2754\n)\n\n\nMetadata detects null boolean field type. (\n#2762\n)\n\n\nProper handling of depth in nested serializers. (\n#2798\n)\n\n\nDisplay viewset without paginator. (\n#2807\n)\n\n\nDon't check for deprecated \n.model\n attribute in permissions (\n#2818\n)\n\n\nRestrict integer field to integers and strings. (\n#2835\n, \n#2836\n)\n\n\nImprove \nIntegerField\n to use compiled decimal regex. (\n#2853\n)\n\n\nPrevent empty \nqueryset\n to raise AssertionError. (\n#2862\n)\n\n\nDjangoModelPermissions\n rely on \nget_queryset\n. (\n#2863\n)\n\n\nCheck \nAcceptHeaderVersioning\n with content negotiation in place. (\n#2868\n)\n\n\nAllow \nDjangoObjectPermissions\n to use views that define \nget_queryset\n. (\n#2905\n)\n\n\n\n\n3.1.1\n\n\nDate\n: \n23rd March 2015\n.\n\n\n\n\nSecurity fix\n: Escape tab switching cookie name in browsable API.\n\n\nDisplay input forms in browsable API if \nserializer_class\n is used, even when \nget_serializer\n method does not exist on the view. (\n#2743\n)\n\n\nUse a password input for the AuthTokenSerializer. (\n#2741\n)\n\n\nFix missing anchor closing tag after next button. (\n#2691\n)\n\n\nFix \nlookup_url_kwarg\n handling in viewsets. (\n#2685\n, \n#2591\n)\n\n\nFix problem with importing \nrest_framework.views\n in \napps.py\n (\n#2678\n)\n\n\nLimitOffsetPagination raises \nTypeError\n if PAGE_SIZE not set (\n#2667\n, \n#2700\n)\n\n\nGerman translation for \nmin_value\n field error message references \nmax_value\n. (\n#2645\n)\n\n\nRemove \nMergeDict\n. (\n#2640\n)\n\n\nSupport serializing unsaved models with related fields. (\n#2637\n, \n#2641\n)\n\n\nAllow blank/null on radio.html choices. (\n#2631\n)\n\n\n\n\n3.1.0\n\n\nDate\n: \n5th March 2015\n.\n\n\nFor full details see the \n3.1 release announcement\n.\n\n\n\n\n3.0.x series\n\n\n3.0.5\n\n\nDate\n: \n10th February 2015\n.\n\n\n\n\nFix a bug where \n_closable_objects\n breaks pickling. (\n#1850\n, \n#2492\n)\n\n\nAllow non-standard \nUser\n models with \nThrottling\n. (\n#2524\n)\n\n\nSupport custom \nUser.db_table\n in TokenAuthentication migration. (\n#2479\n)\n\n\nFix misleading \nAttributeError\n tracebacks on \nRequest\n objects. (\n#2530\n, \n#2108\n)\n\n\nManyRelatedField.get_value\n clearing field on partial update. (\n#2475\n)\n\n\nRemoved '.model' shortcut from code. (\n#2486\n)\n\n\nFix \ndetail_route\n and \nlist_route\n mutable argument. (\n#2518\n)\n\n\nPrefetching the user object when getting the token in \nTokenAuthentication\n. (\n#2519\n)\n\n\n\n\n3.0.4\n\n\nDate\n: \n28th January 2015\n.\n\n\n\n\nDjango 1.8a1 support. (\n#2425\n, \n#2446\n, \n#2441\n)\n\n\nAdd \nDictField\n and support Django 1.8 \nHStoreField\n. (\n#2451\n, \n#2106\n)\n\n\nAdd \nUUIDField\n and support Django 1.8 \nUUIDField\n. (\n#2448\n, \n#2433\n, \n#2432\n)\n\n\nBaseRenderer.render\n now raises \nNotImplementedError\n. (\n#2434\n)\n\n\nFix timedelta JSON serialization on Python 2.6. (\n#2430\n)\n\n\nResultDict\n and \nResultList\n now appear as standard dict/list. (\n#2421\n)\n\n\nFix visible \nHiddenField\n in the HTML form of the web browsable API page. (\n#2410\n)\n\n\nUse \nOrderedDict\n for \nRelatedField.choices\n. (\n#2408\n)\n\n\nFix ident format when using \nHTTP_X_FORWARDED_FOR\n. (\n#2401\n)\n\n\nFix invalid key with memcached while using throttling. (\n#2400\n)\n\n\nFix \nFileUploadParser\n with version 3.x. (\n#2399\n)\n\n\nFix the serializer inheritance. (\n#2388\n)\n\n\nFix caching issues with \nReturnDict\n. (\n#2360\n)\n\n\n\n\n3.0.3\n\n\nDate\n: \n8th January 2015\n.\n\n\n\n\nFix \nMinValueValidator\n on \nmodels.DateField\n. (\n#2369\n)\n\n\nFix serializer missing context when pagination is used. (\n#2355\n)\n\n\nNamespaced router URLs are now supported by the \nDefaultRouter\n. (\n#2351\n)\n\n\nrequired=False\n allows omission of value for output. (\n#2342\n)\n\n\nUse textarea input for \nmodels.TextField\n. (\n#2340\n)\n\n\nUse custom \nListSerializer\n for pagination if required. (\n#2331\n, \n#2327\n)\n\n\nBetter behavior with null and '' for blank HTML fields. (\n#2330\n)\n\n\nEnsure fields in \nexclude\n are model fields. (\n#2319\n)\n\n\nFix \nIntegerField\n and \nmax_length\n argument incompatibility. (\n#2317\n)\n\n\nFix the YAML encoder for 3.0 serializers. (\n#2315\n, \n#2283\n)\n\n\nFix the behavior of empty HTML fields. (\n#2311\n, \n#1101\n)\n\n\nFix Metaclass attribute depth ignoring fields attribute. (\n#2287\n)\n\n\nFix \nformat_suffix_patterns\n to work with Django's \ni18n_patterns\n. (\n#2278\n)\n\n\nAbility to customize router URLs for custom actions, using \nurl_path\n. (\n#2010\n)\n\n\nDon't install Django REST Framework as egg. (\n#2386\n)\n\n\n\n\n3.0.2\n\n\nDate\n: \n17th December 2014\n.\n\n\n\n\nEnsure \nrequest.user\n is made available to response middleware. (\n#2155\n)\n\n\nClient.logout()\n also cancels any existing \nforce_authenticate\n. (\n#2218\n, \n#2259\n)\n\n\nExtra assertions and better checks to preventing incorrect serializer API use. (\n#2228\n, \n#2234\n, \n#2262\n, \n#2263\n, \n#2266\n, \n#2267\n, \n#2289\n, \n#2291\n)\n\n\nFixed \nmin_length\n message for \nCharField\n. (\n#2255\n)\n\n\nFix \nUnicodeDecodeError\n, which can occur on serializer \nrepr\n. (\n#2270\n, \n#2279\n)\n\n\nFix empty HTML values when a default is provided. (\n#2280\n, \n#2294\n)\n\n\nFix \nSlugRelatedField\n raising \nUnicodeEncodeError\n when used as a multiple choice input. (\n#2290\n)\n\n\n\n\n3.0.1\n\n\nDate\n: \n11th December 2014\n.\n\n\n\n\nMore helpful error message when the default Serializer \ncreate()\n fails. (\n#2013\n)\n\n\nRaise error when attempting to save serializer if data is not valid. (\n#2098\n)\n\n\nFix \nFileUploadParser\n breaks with empty file names and multiple upload handlers. (\n#2109\n)\n\n\nImprove \nBindingDict\n to support standard dict-functions. (\n#2135\n, \n#2163\n)\n\n\nAdd \nvalidate()\n to \nListSerializer\n. (\n#2168\n, \n#2225\n, \n#2232\n)\n\n\nFix JSONP renderer failing to escape some characters. (\n#2169\n, \n#2195\n)\n\n\nAdd missing default style for \nFileField\n. (\n#2172\n)\n\n\nActions are required when calling \nViewSet.as_view()\n. (\n#2175\n)\n\n\nAdd \nallow_blank\n to \nChoiceField\n. (\n#2184\n, \n#2239\n)\n\n\nCosmetic fixes in the HTML renderer. (\n#2187\n)\n\n\nRaise error if \nfields\n on serializer is not a list of strings. (\n#2193\n, \n#2213\n)\n\n\nImprove checks for nested creates and updates. (\n#2194\n, \n#2196\n)\n\n\nvalidated_attrs\n argument renamed to \nvalidated_data\n in \nSerializer\n \ncreate()\n/\nupdate()\n. (\n#2197\n)\n\n\nRemove deprecated code to reflect the dropped Django versions. (\n#2200\n)\n\n\nBetter serializer errors for nested writes. (\n#2202\n, \n#2215\n)\n\n\nFix pagination and custom permissions incompatibility. (\n#2205\n)\n\n\nRaise error if \nfields\n on serializer is not a list of strings. (\n#2213\n)\n\n\nAdd missing translation markers for relational fields. (\n#2231\n)\n\n\nImprove field lookup behavior for dicts/mappings. (\n#2244\n, \n#2243\n)\n\n\nOptimized hyperlinked PK. (\n#2242\n)\n\n\n\n\n3.0.0\n\n\nDate\n: 1st December 2014\n\n\nFor full details see the \n3.0 release announcement\n.\n\n\n\n\nFor older release notes, \nplease see the version 2.x documentation\n.",
+ "text": "Release Notes\n\n\n\n\nRelease Early, Release Often\n\n\n Eric S. Raymond, \nThe Cathedral and the Bazaar\n.\n\n\n\n\nVersioning\n\n\nMinor version numbers (0.0.x) are used for changes that are API compatible. You should be able to upgrade between minor point releases without any other code changes.\n\n\nMedium version numbers (0.x.0) may include API changes, in line with the \ndeprecation policy\n. You should read the release notes carefully before upgrading between medium point releases.\n\n\nMajor version numbers (x.0.0) are reserved for substantial project milestones.\n\n\nDeprecation policy\n\n\nREST framework releases follow a formal deprecation policy, which is in line with \nDjango's deprecation policy\n.\n\n\nThe timeline for deprecation of a feature present in version 1.0 would work as follows:\n\n\n\n\n\n\nVersion 1.1 would remain \nfully backwards compatible\n with 1.0, but would raise \nPendingDeprecationWarning\n warnings if you use the feature that are due to be deprecated. These warnings are \nsilent by default\n, but can be explicitly enabled when you're ready to start migrating any required changes. For example if you start running your tests using \npython -Wd manage.py test\n, you'll be warned of any API changes you need to make.\n\n\n\n\n\n\nVersion 1.2 would escalate these warnings to \nDeprecationWarning\n, which is loud by default.\n\n\n\n\n\n\nVersion 1.3 would remove the deprecated bits of API entirely.\n\n\n\n\n\n\nNote that in line with Django's policy, any parts of the framework not mentioned in the documentation should generally be considered private API, and may be subject to change.\n\n\nUpgrading\n\n\nTo upgrade Django REST framework to the latest version, use pip:\n\n\npip install -U djangorestframework\n\n\n\nYou can determine your currently installed version using \npip freeze\n:\n\n\npip freeze | grep djangorestframework\n\n\n\n\n\n3.3.x series\n\n\n3.3.2\n\n\nDate\n: \n14th December 2015\n.\n\n\n\n\nListField\n enforces input is a list. (\n#3513\n)\n\n\nFix regression hiding raw data form. (\n#3600\n, \n#3578\n)\n\n\nFix Python 3.5 compatibility. (\n#3534\n, \n#3626\n)\n\n\nAllow setting a custom Django Paginator in \npagination.PageNumberPagination\n. (\n#3631\n, \n#3684\n)\n\n\nFix relational fields without \nto_fields\n attribute. (\n#3635\n, \n#3634\n)\n\n\nFix \ntemplate.render\n deprecation warnings for Django 1.9. (\n#3654\n)\n\n\nSort response headers in browsable API renderer. (\n#3655\n)\n\n\nUse related_objects api for Django 1.9+. (\n#3656\n, \n#3252\n)\n\n\nAdd confirm modal when deleting. (\n#3228\n, \n#3662\n)\n\n\nReveal previously hidden AttributeErrors and TypeErrors while calling has_[object_]permissions. (\n#3668\n)\n\n\nMake DRF compatible with multi template engine in Django 1.8. (\n#3672\n)\n\n\nUpdate \nNestedBoundField\n to also handle empty string when rendering its form. (\n#3677\n)\n\n\nFix UUID validation to properly catch invalid input types. (\n#3687\n, \n#3679\n)\n\n\nFix caching issues. (\n#3628\n, \n#3701\n)\n\n\nFix Admin and API browser for views without a filter_class. (\n#3705\n, \n#3596\n, \n#3597\n)\n\n\nAdd app_name to rest_framework.urls. (\n#3714\n)\n\n\nImprove authtoken's views to support url versioning. (\n#3718\n, \n#3723\n)\n\n\n\n\n3.3.1\n\n\nDate\n: \n4th November 2015\n.\n\n\n\n\nResolve parsing bug when accessing \nrequest.POST\n (\n#3592\n)\n\n\nCorrectly deal with \nto_field\n referring to primary key. (\n#3593\n)\n\n\nAllow filter HTML to render when no \nfilter_class\n is defined. (\n#3560\n)\n\n\nFix admin rendering issues. (\n#3564\n, \n#3556\n)\n\n\nFix issue with DecimalValidator. (\n#3568\n)\n\n\n\n\n3.3.0\n\n\nDate\n: \n28th October 2015\n.\n\n\n\n\nHTML controls for filters. (\n#3315\n)\n\n\nForms API. (\n#3475\n)\n\n\nAJAX browsable API. (\n#3410\n)\n\n\nAdded JSONField. (\n#3454\n)\n\n\nCorrectly map \nto_field\n when creating \nModelSerializer\n relational fields. (\n#3526\n)\n\n\nInclude keyword arguments when mapping \nFilePathField\n to a serializer field. (\n#3536\n)\n\n\nMap appropriate model \nerror_messages\n on \nModelSerializer\n uniqueness constraints. (\n#3435\n)\n\n\nInclude \nmax_length\n constraint for \nModelSerializer\n fields mapped from TextField. (\n#3509\n)\n\n\nAdded support for Django 1.9. (\n#3450\n, \n#3525\n)\n\n\nRemoved support for Django 1.5 \n 1.6. (\n#3421\n, \n#3429\n)\n\n\nRemoved 'south' migrations. (\n#3495\n)\n\n\n\n\n3.2.x series\n\n\n3.2.5\n\n\nDate\n: \n27th October 2015\n.\n\n\n\n\nEscape \nusername\n in optional logout tag. (\n#3550\n)\n\n\n\n\n3.2.4\n\n\nDate\n: \n21th September 2015\n.\n\n\n\n\nDon't error on missing \nViewSet.search_fields\n attribute. (\n#3324\n, \n#3323\n)\n\n\nFix \nallow_empty\n not working on serializers with \nmany=True\n. (\n#3361\n, \n#3364\n)\n\n\nLet \nDurationField\n accepts integers. (\n#3359\n)\n\n\nMulti-level dictionaries not supported in multipart requests. (\n#3314\n)\n\n\nFix \nListField\n truncation on HTTP PATCH (\n#3415\n, \n#2761\n)\n\n\n\n\n3.2.3\n\n\nDate\n: \n24th August 2015\n.\n\n\n\n\nAdded \nhtml_cutoff\n and \nhtml_cutoff_text\n for limiting select dropdowns. (\n#3313\n)\n\n\nAdded regex style to \nSearchFilter\n. (\n#3316\n)\n\n\nResolve issues with setting blank HTML fields. (\n#3318\n) (\n#3321\n)\n\n\nCorrectly display existing 'select multiple' values in browsable API forms. (\n#3290\n)\n\n\nResolve duplicated validation message for \nIPAddressField\n. ([#3249[gh3249]) (\n#3250\n)\n\n\nFix to ensure admin renderer continues to work when pagination is disabled. (\n#3275\n)\n\n\nResolve error with \nLimitOffsetPagination\n when count=0, offset=0. (\n#3303\n)\n\n\n\n\n3.2.2\n\n\nDate\n: \n13th August 2015\n.\n\n\n\n\nAdd \ndisplay_value()\n method for use when displaying relational field select inputs. (\n#3254\n)\n\n\nFix issue with \nBooleanField\n checkboxes incorrectly displaying as checked. (\n#3258\n)\n\n\nEnsure empty checkboxes properly set \nBooleanField\n to \nFalse\n in all cases. (\n#2776\n)\n\n\nAllow \nWSGIRequest.FILES\n property without raising incorrect deprecated error. (\n#3261\n)\n\n\nResolve issue with rendering nested serializers in forms. (\n#3260\n)\n\n\nRaise an error if user accidentally pass a serializer instance to a response, rather than data. (\n#3241\n)\n\n\n\n\n3.2.1\n\n\nDate\n: \n7th August 2015\n.\n\n\n\n\nFix for relational select widgets rendering without any choices. (\n#3237\n)\n\n\nFix for \n1\n, \n0\n rendering as \ntrue\n, \nfalse\n in the admin interface. \n#3227\n)\n\n\nFix for ListFields with single value in HTML form input. (\n#3238\n)\n\n\nAllow \nrequest.FILES\n for compat with Django's \nHTTPRequest\n class. (\n#3239\n)\n\n\n\n\n3.2.0\n\n\nDate\n: \n6th August 2015\n.\n\n\n\n\nAdd \nAdminRenderer\n. (\n#2926\n)\n\n\nAdd \nFilePathField\n. (\n#1854\n)\n\n\nAdd \nallow_empty\n to \nListField\n. (\n#2250\n)\n\n\nSupport django-guardian 1.3. (\n#3165\n)\n\n\nSupport grouped choices. (\n#3225\n)\n\n\nSupport error forms in browsable API. (\n#3024\n)\n\n\nAllow permission classes to customize the error message. (\n#2539\n)\n\n\nSupport \nsource=\nmethod\n on hyperlinked fields. (\n#2690\n)\n\n\nListField(allow_null=True)\n now allows null as the list value, not null items in the list. (\n#2766\n)\n\n\nManyToMany()\n maps to \nallow_empty=False\n, \nManyToMany(blank=True)\n maps to \nallow_empty=True\n. (\n#2804\n)\n\n\nSupport custom serialization styles for primary key fields. (\n#2789\n)\n\n\nOPTIONS\n requests support nested representations. (\n#2915\n)\n\n\nSet \nview.action == \"metadata\"\n for viewsets with \nOPTIONS\n requests. (\n#3115\n)\n\n\nSupport \nallow_blank\n on \nUUIDField\n. ([#3130][gh#3130])\n\n\nDo not display view docstrings with 401 or 403 response codes. (\n#3216\n)\n\n\nResolve Django 1.8 deprecation warnings. (\n#2886\n)\n\n\nFix for \nDecimalField\n validation. (\n#3139\n)\n\n\nFix behavior of \nallow_blank=False\n when used with \ntrim_whitespace=True\n. (\n#2712\n)\n\n\nFix issue with some field combinations incorrectly mapping to an invalid \nallow_blank\n argument. (\n#3011\n)\n\n\nFix for output representations with prefetches and modified querysets. (\n#2704\n, \n#2727\n)\n\n\nFix assertion error when CursorPagination is provided with certains invalid query parameters. (#2920)\ngh2920\n.\n\n\nFix \nUnicodeDecodeError\n when invalid characters included in header with \nTokenAuthentication\n. (\n#2928\n)\n\n\nFix transaction rollbacks with \n@non_atomic_requests\n decorator. (\n#3016\n)\n\n\nFix duplicate results issue with Oracle databases using \nSearchFilter\n. (\n#2935\n)\n\n\nFix checkbox alignment and rendering in browsable API forms. (\n#2783\n)\n\n\nFix for unsaved file objects which should use \n\"url\": null\n in the representation. (\n#2759\n)\n\n\nFix field value rendering in browsable API. (\n#2416\n)\n\n\nFix \nHStoreField\n to include \nallow_blank=True\n in \nDictField\n mapping. (\n#2659\n)\n\n\nNumerous other cleanups, improvements to error messaging, private API \n minor fixes.\n\n\n\n\n\n\n3.1.x series\n\n\n3.1.3\n\n\nDate\n: \n4th June 2015\n.\n\n\n\n\nAdd \nDurationField\n. (\n#2481\n, \n#2989\n)\n\n\nAdd \nformat\n argument to \nUUIDField\n. (\n#2788\n, \n#3000\n)\n\n\nMultipleChoiceField\n empties incorrectly on a partial update using multipart/form-data (\n#2993\n, \n#2894\n)\n\n\nFix a bug in options related to read-only \nRelatedField\n. (\n#2981\n, \n#2811\n)\n\n\nFix nested serializers with \nunique_together\n relations. (\n#2975\n)\n\n\nAllow unexpected values for \nChoiceField\n/\nMultipleChoiceField\n representations. (\n#2839\n, \n#2940\n)\n\n\nRollback the transaction on error if \nATOMIC_REQUESTS\n is set. (\n#2887\n, \n#2034\n)\n\n\nSet the action on a view when override_method regardless of its None-ness. (\n#2933\n)\n\n\nDecimalField\n accepts \n2E+2\n as 200 and validates decimal place correctly. (\n#2948\n, \n#2947\n)\n\n\nSupport basic authentication with custom \nUserModel\n that change \nusername\n. (\n#2952\n)\n\n\nIPAddressField\n improvements. (\n#2747\n, \n#2618\n, \n#3008\n)\n\n\nImprove \nDecimalField\n for easier subclassing. (\n#2695\n)\n\n\n\n\n3.1.2\n\n\nDate\n: \n13rd May 2015\n.\n\n\n\n\nDateField.to_representation\n can handle str and empty values. (\n#2656\n, \n#2687\n, \n#2869\n)\n\n\nUse default reason phrases from HTTP standard. (\n#2764\n, \n#2763\n)\n\n\nRaise error when \nModelSerializer\n used with abstract model. (\n#2757\n, \n#2630\n)\n\n\nHandle reversal of non-API view_name in \nHyperLinkedRelatedField\n (\n#2724\n, \n#2711\n)\n\n\nDont require pk strictly for related fields. (\n#2745\n, \n#2754\n)\n\n\nMetadata detects null boolean field type. (\n#2762\n)\n\n\nProper handling of depth in nested serializers. (\n#2798\n)\n\n\nDisplay viewset without paginator. (\n#2807\n)\n\n\nDon't check for deprecated \n.model\n attribute in permissions (\n#2818\n)\n\n\nRestrict integer field to integers and strings. (\n#2835\n, \n#2836\n)\n\n\nImprove \nIntegerField\n to use compiled decimal regex. (\n#2853\n)\n\n\nPrevent empty \nqueryset\n to raise AssertionError. (\n#2862\n)\n\n\nDjangoModelPermissions\n rely on \nget_queryset\n. (\n#2863\n)\n\n\nCheck \nAcceptHeaderVersioning\n with content negotiation in place. (\n#2868\n)\n\n\nAllow \nDjangoObjectPermissions\n to use views that define \nget_queryset\n. (\n#2905\n)\n\n\n\n\n3.1.1\n\n\nDate\n: \n23rd March 2015\n.\n\n\n\n\nSecurity fix\n: Escape tab switching cookie name in browsable API.\n\n\nDisplay input forms in browsable API if \nserializer_class\n is used, even when \nget_serializer\n method does not exist on the view. (\n#2743\n)\n\n\nUse a password input for the AuthTokenSerializer. (\n#2741\n)\n\n\nFix missing anchor closing tag after next button. (\n#2691\n)\n\n\nFix \nlookup_url_kwarg\n handling in viewsets. (\n#2685\n, \n#2591\n)\n\n\nFix problem with importing \nrest_framework.views\n in \napps.py\n (\n#2678\n)\n\n\nLimitOffsetPagination raises \nTypeError\n if PAGE_SIZE not set (\n#2667\n, \n#2700\n)\n\n\nGerman translation for \nmin_value\n field error message references \nmax_value\n. (\n#2645\n)\n\n\nRemove \nMergeDict\n. (\n#2640\n)\n\n\nSupport serializing unsaved models with related fields. (\n#2637\n, \n#2641\n)\n\n\nAllow blank/null on radio.html choices. (\n#2631\n)\n\n\n\n\n3.1.0\n\n\nDate\n: \n5th March 2015\n.\n\n\nFor full details see the \n3.1 release announcement\n.\n\n\n\n\n3.0.x series\n\n\n3.0.5\n\n\nDate\n: \n10th February 2015\n.\n\n\n\n\nFix a bug where \n_closable_objects\n breaks pickling. (\n#1850\n, \n#2492\n)\n\n\nAllow non-standard \nUser\n models with \nThrottling\n. (\n#2524\n)\n\n\nSupport custom \nUser.db_table\n in TokenAuthentication migration. (\n#2479\n)\n\n\nFix misleading \nAttributeError\n tracebacks on \nRequest\n objects. (\n#2530\n, \n#2108\n)\n\n\nManyRelatedField.get_value\n clearing field on partial update. (\n#2475\n)\n\n\nRemoved '.model' shortcut from code. (\n#2486\n)\n\n\nFix \ndetail_route\n and \nlist_route\n mutable argument. (\n#2518\n)\n\n\nPrefetching the user object when getting the token in \nTokenAuthentication\n. (\n#2519\n)\n\n\n\n\n3.0.4\n\n\nDate\n: \n28th January 2015\n.\n\n\n\n\nDjango 1.8a1 support. (\n#2425\n, \n#2446\n, \n#2441\n)\n\n\nAdd \nDictField\n and support Django 1.8 \nHStoreField\n. (\n#2451\n, \n#2106\n)\n\n\nAdd \nUUIDField\n and support Django 1.8 \nUUIDField\n. (\n#2448\n, \n#2433\n, \n#2432\n)\n\n\nBaseRenderer.render\n now raises \nNotImplementedError\n. (\n#2434\n)\n\n\nFix timedelta JSON serialization on Python 2.6. (\n#2430\n)\n\n\nResultDict\n and \nResultList\n now appear as standard dict/list. (\n#2421\n)\n\n\nFix visible \nHiddenField\n in the HTML form of the web browsable API page. (\n#2410\n)\n\n\nUse \nOrderedDict\n for \nRelatedField.choices\n. (\n#2408\n)\n\n\nFix ident format when using \nHTTP_X_FORWARDED_FOR\n. (\n#2401\n)\n\n\nFix invalid key with memcached while using throttling. (\n#2400\n)\n\n\nFix \nFileUploadParser\n with version 3.x. (\n#2399\n)\n\n\nFix the serializer inheritance. (\n#2388\n)\n\n\nFix caching issues with \nReturnDict\n. (\n#2360\n)\n\n\n\n\n3.0.3\n\n\nDate\n: \n8th January 2015\n.\n\n\n\n\nFix \nMinValueValidator\n on \nmodels.DateField\n. (\n#2369\n)\n\n\nFix serializer missing context when pagination is used. (\n#2355\n)\n\n\nNamespaced router URLs are now supported by the \nDefaultRouter\n. (\n#2351\n)\n\n\nrequired=False\n allows omission of value for output. (\n#2342\n)\n\n\nUse textarea input for \nmodels.TextField\n. (\n#2340\n)\n\n\nUse custom \nListSerializer\n for pagination if required. (\n#2331\n, \n#2327\n)\n\n\nBetter behavior with null and '' for blank HTML fields. (\n#2330\n)\n\n\nEnsure fields in \nexclude\n are model fields. (\n#2319\n)\n\n\nFix \nIntegerField\n and \nmax_length\n argument incompatibility. (\n#2317\n)\n\n\nFix the YAML encoder for 3.0 serializers. (\n#2315\n, \n#2283\n)\n\n\nFix the behavior of empty HTML fields. (\n#2311\n, \n#1101\n)\n\n\nFix Metaclass attribute depth ignoring fields attribute. (\n#2287\n)\n\n\nFix \nformat_suffix_patterns\n to work with Django's \ni18n_patterns\n. (\n#2278\n)\n\n\nAbility to customize router URLs for custom actions, using \nurl_path\n. (\n#2010\n)\n\n\nDon't install Django REST Framework as egg. (\n#2386\n)\n\n\n\n\n3.0.2\n\n\nDate\n: \n17th December 2014\n.\n\n\n\n\nEnsure \nrequest.user\n is made available to response middleware. (\n#2155\n)\n\n\nClient.logout()\n also cancels any existing \nforce_authenticate\n. (\n#2218\n, \n#2259\n)\n\n\nExtra assertions and better checks to preventing incorrect serializer API use. (\n#2228\n, \n#2234\n, \n#2262\n, \n#2263\n, \n#2266\n, \n#2267\n, \n#2289\n, \n#2291\n)\n\n\nFixed \nmin_length\n message for \nCharField\n. (\n#2255\n)\n\n\nFix \nUnicodeDecodeError\n, which can occur on serializer \nrepr\n. (\n#2270\n, \n#2279\n)\n\n\nFix empty HTML values when a default is provided. (\n#2280\n, \n#2294\n)\n\n\nFix \nSlugRelatedField\n raising \nUnicodeEncodeError\n when used as a multiple choice input. (\n#2290\n)\n\n\n\n\n3.0.1\n\n\nDate\n: \n11th December 2014\n.\n\n\n\n\nMore helpful error message when the default Serializer \ncreate()\n fails. (\n#2013\n)\n\n\nRaise error when attempting to save serializer if data is not valid. (\n#2098\n)\n\n\nFix \nFileUploadParser\n breaks with empty file names and multiple upload handlers. (\n#2109\n)\n\n\nImprove \nBindingDict\n to support standard dict-functions. (\n#2135\n, \n#2163\n)\n\n\nAdd \nvalidate()\n to \nListSerializer\n. (\n#2168\n, \n#2225\n, \n#2232\n)\n\n\nFix JSONP renderer failing to escape some characters. (\n#2169\n, \n#2195\n)\n\n\nAdd missing default style for \nFileField\n. (\n#2172\n)\n\n\nActions are required when calling \nViewSet.as_view()\n. (\n#2175\n)\n\n\nAdd \nallow_blank\n to \nChoiceField\n. (\n#2184\n, \n#2239\n)\n\n\nCosmetic fixes in the HTML renderer. (\n#2187\n)\n\n\nRaise error if \nfields\n on serializer is not a list of strings. (\n#2193\n, \n#2213\n)\n\n\nImprove checks for nested creates and updates. (\n#2194\n, \n#2196\n)\n\n\nvalidated_attrs\n argument renamed to \nvalidated_data\n in \nSerializer\n \ncreate()\n/\nupdate()\n. (\n#2197\n)\n\n\nRemove deprecated code to reflect the dropped Django versions. (\n#2200\n)\n\n\nBetter serializer errors for nested writes. (\n#2202\n, \n#2215\n)\n\n\nFix pagination and custom permissions incompatibility. (\n#2205\n)\n\n\nRaise error if \nfields\n on serializer is not a list of strings. (\n#2213\n)\n\n\nAdd missing translation markers for relational fields. (\n#2231\n)\n\n\nImprove field lookup behavior for dicts/mappings. (\n#2244\n, \n#2243\n)\n\n\nOptimized hyperlinked PK. (\n#2242\n)\n\n\n\n\n3.0.0\n\n\nDate\n: 1st December 2014\n\n\nFor full details see the \n3.0 release announcement\n.\n\n\n\n\nFor older release notes, \nplease see the version 2.x documentation\n.",
"title": "Release Notes"
},
{
@@ -3117,7 +3117,7 @@
},
{
"location": "/topics/release-notes/#33x-series",
- "text": "3.3.1 Date : 4th November 2015 . Resolve parsing bug when accessing request.POST ( #3592 ) Correctly deal with to_field referring to primary key. ( #3593 ) Allow filter HTML to render when no filter_class is defined. ( #3560 ) Fix admin rendering issues. ( #3564 , #3556 ) Fix issue with DecimalValidator. ( #3568 ) 3.3.0 Date : 28th October 2015 . HTML controls for filters. ( #3315 ) Forms API. ( #3475 ) AJAX browsable API. ( #3410 ) Added JSONField. ( #3454 ) Correctly map to_field when creating ModelSerializer relational fields. ( #3526 ) Include keyword arguments when mapping FilePathField to a serializer field. ( #3536 ) Map appropriate model error_messages on ModelSerializer uniqueness constraints. ( #3435 ) Include max_length constraint for ModelSerializer fields mapped from TextField. ( #3509 ) Added support for Django 1.9. ( #3450 , #3525 ) Removed support for Django 1.5 1.6. ( #3421 , #3429 ) Removed 'south' migrations. ( #3495 )",
+ "text": "3.3.2 Date : 14th December 2015 . ListField enforces input is a list. ( #3513 ) Fix regression hiding raw data form. ( #3600 , #3578 ) Fix Python 3.5 compatibility. ( #3534 , #3626 ) Allow setting a custom Django Paginator in pagination.PageNumberPagination . ( #3631 , #3684 ) Fix relational fields without to_fields attribute. ( #3635 , #3634 ) Fix template.render deprecation warnings for Django 1.9. ( #3654 ) Sort response headers in browsable API renderer. ( #3655 ) Use related_objects api for Django 1.9+. ( #3656 , #3252 ) Add confirm modal when deleting. ( #3228 , #3662 ) Reveal previously hidden AttributeErrors and TypeErrors while calling has_[object_]permissions. ( #3668 ) Make DRF compatible with multi template engine in Django 1.8. ( #3672 ) Update NestedBoundField to also handle empty string when rendering its form. ( #3677 ) Fix UUID validation to properly catch invalid input types. ( #3687 , #3679 ) Fix caching issues. ( #3628 , #3701 ) Fix Admin and API browser for views without a filter_class. ( #3705 , #3596 , #3597 ) Add app_name to rest_framework.urls. ( #3714 ) Improve authtoken's views to support url versioning. ( #3718 , #3723 ) 3.3.1 Date : 4th November 2015 . Resolve parsing bug when accessing request.POST ( #3592 ) Correctly deal with to_field referring to primary key. ( #3593 ) Allow filter HTML to render when no filter_class is defined. ( #3560 ) Fix admin rendering issues. ( #3564 , #3556 ) Fix issue with DecimalValidator. ( #3568 ) 3.3.0 Date : 28th October 2015 . HTML controls for filters. ( #3315 ) Forms API. ( #3475 ) AJAX browsable API. ( #3410 ) Added JSONField. ( #3454 ) Correctly map to_field when creating ModelSerializer relational fields. ( #3526 ) Include keyword arguments when mapping FilePathField to a serializer field. ( #3536 ) Map appropriate model error_messages on ModelSerializer uniqueness constraints. ( #3435 ) Include max_length constraint for ModelSerializer fields mapped from TextField. ( #3509 ) Added support for Django 1.9. ( #3450 , #3525 ) Removed support for Django 1.5 1.6. ( #3421 , #3429 ) Removed 'south' migrations. ( #3495 )",
"title": "3.3.x series"
},
{
diff --git a/sitemap.xml b/sitemap.xml
index 3be74ce47..89a4fcab9 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -4,7 +4,7 @@
http://www.django-rest-framework.org//
- 2015-11-04
+ 2015-12-14daily
@@ -13,43 +13,43 @@
http://www.django-rest-framework.org//tutorial/quickstart/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//tutorial/1-serialization/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//tutorial/2-requests-and-responses/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//tutorial/3-class-based-views/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//tutorial/4-authentication-and-permissions/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//tutorial/5-relationships-and-hyperlinked-apis/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//tutorial/6-viewsets-and-routers/
- 2015-11-04
+ 2015-12-14daily
@@ -59,157 +59,157 @@
http://www.django-rest-framework.org//api-guide/requests/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/responses/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/views/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/generic-views/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/viewsets/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/routers/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/parsers/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/renderers/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/serializers/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/fields/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/relations/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/validators/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/authentication/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/permissions/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/throttling/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/filtering/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/pagination/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/versioning/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/content-negotiation/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/metadata/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/format-suffixes/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/reverse/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/exceptions/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/status-codes/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/testing/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//api-guide/settings/
- 2015-11-04
+ 2015-12-14daily
@@ -219,97 +219,97 @@
http://www.django-rest-framework.org//topics/documenting-your-api/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/internationalization/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/ajax-csrf-cors/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/html-and-forms/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/browser-enhancements/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/browsable-api/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/rest-hypermedia-hateoas/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/third-party-resources/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/contributing/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/project-management/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/3.0-announcement/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/3.1-announcement/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/3.2-announcement/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/3.3-announcement/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/kickstarter-announcement/
- 2015-11-04
+ 2015-12-14dailyhttp://www.django-rest-framework.org//topics/release-notes/
- 2015-11-04
+ 2015-12-14daily
diff --git a/topics/3.0-announcement/index.html b/topics/3.0-announcement/index.html
index 1c0b78eb2..c3fddd781 100644
--- a/topics/3.0-announcement/index.html
+++ b/topics/3.0-announcement/index.html
@@ -426,7 +426,7 @@
Below is an in-depth guide to the API changes and migration notes for 3.0.
The usage of request.DATA and request.FILES is now pending deprecation in favor of a single request.data attribute that contains all the parsed data.
Having separate attributes is reasonable for web applications that only ever parse url-encoded or multipart requests, but makes less sense for the general-purpose request parsing that REST framework supports.
You may now pass all the request data to a serializer class in a single argument:
The .restore_object() method is now removed, and we instead have two separate methods, .create() and .update(). These methods work slightly different to the previous .restore_object().
When using the .create() and .update() methods you should both create and save the object instance. This is in contrast to the previous .restore_object() behavior that would instantiate the object but not save it.
These methods also replace the optional .save_object() method, which no longer exists.
You must now use the .validated_data attribute if you need to inspect the data before saving, rather than using the .object attribute, which no longer exists.
For example the following code is no longer valid:
if serializer.is_valid():
@@ -838,7 +838,7 @@ def all_high_scores(request):
REST framework now has more explicit and clear control over validating empty values for fields.
Previously the meaning of the required=False keyword argument was underspecified. In practice its use meant that a field could either be not included in the input, or it could be included, but be None or the empty string.
We now have a better separation, with separate required, allow_null and allow_blank arguments.
@@ -960,7 +960,7 @@ This removes some magic and makes it easier and more obvious to move between imp
REST framework now provides new validators that allow you to ensure field uniqueness, while still using a completely explicit Serializer class instead of using ModelSerializer.
The UniqueValidator should be applied to a serializer field, and takes a single queryset argument.
If you use REST framework commercially we strongly encourage you to invest in its continued development by signing up for a paid plan.
-
We believe that collaboratively funded software can offer outstanding returns on investment, by allowing users and clients to collectively share the cost of development.
-
Signing up for a paid plan will:
-
-
Directly contribute to faster releases, more features and higher quality software.
-
Allow more time to be invested in documentation, issue triage and community support.
-
Safeguard the future development of REST framework.
-
-
REST framework will always be open source and permissively licensed, but we firmly believe it is in the commercial best-interest for users of the project to fund its ongoing development.
-
-
Making the business case
-
Our successful Kickstarter campaign demonstrates the cost-reward ratio of shared development funding.
-
With typical corporate fundings of just £100-£1000 per organization we successfully delivered:
-
-
The comprehensive 3.0 serializer redesign.
-
Substantial improvements to the Browsable API.
-
The admin interface.
-
A new pagination API including offset/limit and cursor pagination implementations, plus on-page controls.
-
A versioning API, including URL-based and header-based versioning schemes.
-
Support for customizable exception handling.
-
Support for Django's PostgreSQL HStoreField, ArrayField and JSONField.
-
Templated HTML form support, including HTML forms with nested list and objects.
-
Internationalization support for API responses, currently with 27 languages.
-
The metadata APIs for handling OPTIONS requests and schema endpoints.
-
Numerous minor improvements and better quality throughout the codebase.
-
Ongoing triage and community support, closing over 1600 tickets.
-
-
This incredible level of return on investment is only possible through collaboratively funded models, which is why we believe that supporting our paid plans is in everyone's best interest.
-
-
Individual plan
-
This subscription is recommended for freelancers and other individuals with an interest in seeing REST framework continue to improve.
-
If you are using REST framework as an full-time employee, consider recommending that your company takes out a corporate plan.
-
-
-
-
- $
- 15
- /month
-
-
Individual
-
-
- Support ongoing development
-
-
- Credited on the site
-
-
-
-
-
-
-
-
-
-
Billing is monthly and you can cancel at any time.
-
-
Corporate plans
-
These subscriptions are recommended for companies and organizations using REST framework either publicly or privately.
-
In exchange for funding you'll also receive advertising space on our site, allowing you to promote your company or product to many tens of thousands of developers worldwide.
-
Our professional and premium plans also include priority support. At any time your engineers can escalate an issue or discussion group thread, and we'll ensure it gets a guaranteed response within the next working day.
-
-
-
-
- $
- 50
- /month
-
-
Basic
-
-
- Support ongoing development
-
-
- Funding page ad placement
-
-
-
-
-
-
-
-
- $
- 250
- /month
-
-
Professional
-
-
- Add a half day per month development time to the project
-
-
- Homepage ad placement
-
-
- Priority support for your engineers
-
-
-
-
-
-
-
-
- $
- 500
- /month
-
-
Premium
-
-
- Add one full day per month development time to the project
-
-
- Full site ad placement
-
-
- Priority support for your engineers
-
-
-
-
-
-
-
-
-
-
Billing is monthly and you can cancel at any time.
-
Once you've signed up we'll contact you via email and arrange your ad placements on the site.
Although we're incredibly proud of REST framework in its current state we believe there is still huge scope for improvement. What we're aiming for here is a highly polished, rock solid product. This needs to backed up with impeccable documentation and a great third party ecosystem.
-
The roadmap below is a broad indication of just some of the ongoing and future work we believe is important to REST framework.
-
-
Increasing our "bus factor" through documented organizational process & safeguards.
-
More time towards testing and hardening releases, with only gradual, well-documented deprecations.
-
A formal policy on security backports for non-current releases.
-
Continuing triage & community support.
-
Improved project documentation, including versioned & internationalized docs.
-
Improved third party package visibility.
-
Refining the admin interface, ensuring it has a fully customizable API and making it suitable as end-user facing application.
-
Cleaning up internal complexities including the BrowsableAPIRenderer and Request object.
-
Support for alternative backends such as SQLAlchemy.
-
Support for non-database backed services.
-
HTTP Caching API & support for conditional database lookups.
-
Benchmarking and performance improvements.
-
In depth documentation on advanced usage and best practices.
-
Documentation & support for integration with realtime systems.
-
Hypermedia support and client libraries.
-
Support for JSON schema as endpoints or OPTIONS responses.
-
API metric tools.
-
Debug & logging tools.
-
Third party GraphQL support.
-
-
By taking out a paid plan you'll be directly contributing towards making these features happen.
The r'^api-auth/' part of pattern can actually be whatever URL you want to use. The only restriction is that the included urls must use the 'rest_framework' namespace.
+
The r'^api-auth/' part of pattern can actually be whatever URL you want to use. The only restriction is that the included urls must use the 'rest_framework' namespace. In Django 1.9+, REST framework will set the namespace, so you may leave it out.
Now if you open up the browser again and refresh the page you'll see a 'Login' link in the top right of the page. If you log in as one of the users you created earlier, you'll be able to create code snippets again.
Once you've created a few code snippets, navigate to the '/users/' endpoint, and notice that the representation includes a list of the snippet pks that are associated with each user, in each user's 'snippets' field.