mirror of
https://github.com/encode/django-rest-framework.git
synced 2024-11-10 19:56:59 +03:00
Add example using source=‘*’
to custom field docs. (#5688)
* Add example using `source=‘*’` to custom field docs. * Add nested serialiser example Closes #2032 closes #3066
This commit is contained in:
parent
d38b94fd74
commit
cf3929d88d
|
@ -561,6 +561,8 @@ Note that the `WritableField` class that was present in version 2.x no longer ex
|
|||
|
||||
## Examples
|
||||
|
||||
### A Basic Custom Field
|
||||
|
||||
Let's look at an example of serializing a class that represents an RGB color value:
|
||||
|
||||
class Color(object):
|
||||
|
@ -600,7 +602,7 @@ As an example, let's create a field that can be used to represent the class name
|
|||
"""
|
||||
return obj.__class__.__name__
|
||||
|
||||
#### Raising validation errors
|
||||
### Raising validation errors
|
||||
|
||||
Our `ColorField` class above currently does not perform any data validation.
|
||||
To indicate invalid data, we should raise a `serializers.ValidationError`, like so:
|
||||
|
@ -646,6 +648,137 @@ The `.fail()` method is a shortcut for raising `ValidationError` that takes a me
|
|||
|
||||
This style keeps your error messages cleaner and more separated from your code, and should be preferred.
|
||||
|
||||
### Using `source='*'`
|
||||
|
||||
Here we'll take an example of a _flat_ `DataPoint` model with `x_coordinate` and `y_coordinate` attributes.
|
||||
|
||||
class DataPoint(models.Model):
|
||||
label = models.CharField(max_length=50)
|
||||
x_coordinate = models.SmallIntegerField()
|
||||
y_coordinate = models.SmallIntegerField()
|
||||
|
||||
Using a custom field and `source='*'` we can provide a nested representation of
|
||||
the coordinate pair:
|
||||
|
||||
class CoordinateField(serializers.Field):
|
||||
|
||||
def to_representation(self, obj):
|
||||
ret = {
|
||||
"x": obj.x_coordinate,
|
||||
"y": obj.y_coordinate
|
||||
}
|
||||
return ret
|
||||
|
||||
def to_internal_value(self, data):
|
||||
ret = {
|
||||
"x_coordinate": data["x"],
|
||||
"y_coordinate": data["y"],
|
||||
}
|
||||
return ret
|
||||
|
||||
|
||||
class DataPointSerializer(serializers.ModelSerializer):
|
||||
coordinates = CoordinateField(source='*')
|
||||
|
||||
class Meta:
|
||||
model = DataPoint
|
||||
fields = ['label', 'coordinates']
|
||||
|
||||
Note that this example doesn't handle validation. Partly for that reason, in a
|
||||
real project, the coordinate nesting might be better handled with a nested serialiser
|
||||
using `source='*'`, with two `IntegerField` instances, each with their own `source`
|
||||
pointing to the relevant field.
|
||||
|
||||
The key points from the example, though, are:
|
||||
|
||||
* `to_representation` is passed the entire `DataPoint` object and must map from that
|
||||
to the desired output.
|
||||
|
||||
>>> instance = DataPoint(label='Example', x_coordinate=1, y_coordinate=2)
|
||||
>>> out_serializer = DataPointSerializer(instance)
|
||||
>>> out_serializer.data
|
||||
ReturnDict([('label', 'testing'), ('coordinates', {'x': 1, 'y': 2})])
|
||||
|
||||
* Unless our field is to be read-only, `to_internal_value` must map back to a dict
|
||||
suitable for updating our target object. With `source='*'`, the return from
|
||||
`to_internal_value` will update the root validated data dictionary, rather than a single key.
|
||||
|
||||
>>> data = {
|
||||
... "label": "Second Example",
|
||||
... "coordinates": {
|
||||
... "x": 3,
|
||||
... "y": 4,
|
||||
... }
|
||||
... }
|
||||
>>> in_serializer = DataPointSerializer(data=data)
|
||||
>>> in_serializer.is_valid()
|
||||
True
|
||||
>>> in_serializer.validated_data
|
||||
OrderedDict([('label', 'Second Example'),
|
||||
('y_coordinate', 4),
|
||||
('x_coordinate', 3)])
|
||||
|
||||
For completeness lets do the same thing again but with the nested serialiser
|
||||
approach suggested above:
|
||||
|
||||
class NestedCoordinateSerializer(serializers.Serializer):
|
||||
x = serializers.IntegerField(source='x_coordinate')
|
||||
y = serializers.IntegerField(source='y_coordinate')
|
||||
|
||||
|
||||
class DataPointSerializer(serializers.ModelSerializer):
|
||||
coordinates = NestedCoordinateSerializer(source='*')
|
||||
|
||||
class Meta:
|
||||
model = DataPoint
|
||||
fields = ['label', 'coordinates']
|
||||
|
||||
Here the mapping between the target and source attribute pairs (`x` and
|
||||
`x_coordinate`, `y` and `y_coordinate`) is handled in the `IntegerField`
|
||||
declarations. It's our `NestedCoordinateSerializer` that takes `source='*'`.
|
||||
|
||||
Our new `DataPointSerializer` exhibits the same behaviour as the custom field
|
||||
approach.
|
||||
|
||||
Serialising:
|
||||
|
||||
>>> out_serializer = DataPointSerializer(instance)
|
||||
>>> out_serializer.data
|
||||
ReturnDict([('label', 'testing'),
|
||||
('coordinates', OrderedDict([('x', 1), ('y', 2)]))])
|
||||
|
||||
Deserialising:
|
||||
|
||||
>>> in_serializer = DataPointSerializer(data=data)
|
||||
>>> in_serializer.is_valid()
|
||||
True
|
||||
>>> in_serializer.validated_data
|
||||
OrderedDict([('label', 'still testing'),
|
||||
('x_coordinate', 3),
|
||||
('y_coordinate', 4)])
|
||||
|
||||
But we also get the built-in validation for free:
|
||||
|
||||
>>> invalid_data = {
|
||||
... "label": "still testing",
|
||||
... "coordinates": {
|
||||
... "x": 'a',
|
||||
... "y": 'b',
|
||||
... }
|
||||
... }
|
||||
>>> invalid_serializer = DataPointSerializer(data=invalid_data)
|
||||
>>> invalid_serializer.is_valid()
|
||||
False
|
||||
>>> invalid_serializer.errors
|
||||
ReturnDict([('coordinates',
|
||||
{'x': ['A valid integer is required.'],
|
||||
'y': ['A valid integer is required.']})])
|
||||
|
||||
For this reason, the nested serialiser approach would be the first to try. You
|
||||
would use the custom field approach when the nested serialiser becomes infeasible
|
||||
or overly complex.
|
||||
|
||||
|
||||
# Third party packages
|
||||
|
||||
The following third party packages are also available.
|
||||
|
|
Loading…
Reference in New Issue
Block a user