Asyncio daemon tutorial ======================= .. _asyncio-daemon-tutorial: This tutorials shows how to build an ``asyncio`` daemon following the dependency injection principle. We will use next tools: - Python 3.8 - Docker - Docker-compose Start from the scratch or jump to the section: .. contents:: :local: :backlinks: none You can find complete project on the `Github `_. What are we going to build? --------------------------- We will build a monitoring daemon that monitors web services availability. The daemon will send the requests to the `example.com `_ and `httpbin.org `_ every minute. For each successfully completed response it will log: - The response code - The amount of bytes in the response - The time took to complete the response .. image:: asyncio_images/diagram.png Prerequisites ------------- We will use `Docker `_ and `docker-compose `_ in this tutorial. Let's check the versions: .. code-block:: bash docker --version docker-compose --version The output should look something like: .. code-block:: bash Docker version 19.03.12, build 48a66213fe docker-compose version 1.26.2, build eefe0d31 .. note:: If you don't have ``Docker`` or ``docker-compose`` you need to install them before proceeding. Follow these installation guides: - `Install Docker `_ - `Install docker-compose `_ The prerequisites are satisfied. Let's get started with the project layout. Project layout -------------- Project layout starts with the project folder. It is also called the project root. Create the project root folder and set it as a working directory: .. code-block:: bash mkdir monitoring-daemon-tutorial cd monitoring-daemon-tutorial Now we need to create the project structure. Create the files and folders following next layout. All files should be empty for now. We will fill them in later. Initial project layout: .. code-block:: bash ./ ├── monitoringdaemon/ │ ├── __init__.py │ ├── __main__.py │ ├── containers.py │ ├── dispatcher.py │ └── monitors.py ├── config.yml ├── docker-compose.yml ├── Dockerfile └── requirements.txt The project layout is ready. Let's prepare the environment. Prepare the environment ----------------------- In this section we are going to prepare the environment. First, we need to specify the project requirements. We will use next packages: - ``dependency-injector`` - the dependency injection framework - ``aiohttp`` - the web framework (we need only http client) - ``pyyaml`` - the YAML files parsing library, used for the reading of the configuration files - ``pytest`` - the testing framework - ``pytest-asyncio`` - the helper library for the testing of the ``asyncio`` application - ``pytest-cov`` - the helper library for measuring the test coverage Put next lines into the ``requirements.txt`` file: .. code-block:: bash dependency-injector aiohttp pyyaml pytest pytest-asyncio pytest-cov Second, we need to create the ``Dockerfile``. It will describe the daemon's build process and specify how to run it. We will use ``python:3.8-buster`` as a base image. Put next lines into the ``Dockerfile`` file: .. code-block:: bash FROM python:3.8-buster ENV PYTHONUNBUFFERED=1 WORKDIR /code COPY . /code/ RUN apt-get install openssl \ && pip install --upgrade pip \ && pip install -r requirements.txt \ && rm -rf ~/.cache CMD ["python", "-m", "monitoringdaemon"] Third, we need to define the container in the docker-compose configuration. Put next lines into the ``docker-compose.yml`` file: .. code-block:: yaml version: "3.7" services: monitor: build: ./ image: monitoring-daemon volumes: - "./:/code" All is ready. Let's check that the environment is setup properly. Run in the terminal: .. code-block:: bash docker-compose build The build process may take a couple of minutes. You should see something like this in the end: .. code-block:: bash Successfully built 5b4ee5e76e35 Successfully tagged monitoring-daemon:latest After the build is done run the container: .. code-block:: bash docker-compose up The output should look like: .. code-block:: bash Creating network "monitoring-daemon-tutorial_default" with the default driver Creating monitoring-daemon-tutorial_monitor_1 ... done Attaching to monitoring-daemon-tutorial_monitor_1 monitoring-daemon-tutorial_monitor_1 exited with code 0 The environment is ready. The application does not do any work and just exits with a code ``0``. Logging and configuration ------------------------- In this section we will configure the logging and configuration file parsing. Let's start with the the main part of our application - the container. Container will keep all of the application components and their dependencies. First two components that we're going to add are the config object and the provider for configuring the logging. Put next lines into the ``containers.py`` file: .. code-block:: python """Application containers module.""" import logging import sys from dependency_injector import containers, providers class ApplicationContainer(containers.DeclarativeContainer): """Application container.""" config = providers.Configuration() configure_logging = providers.Callable( logging.basicConfig, stream=sys.stdout, level=config.log.level, format=config.log.format, ) .. note:: We have used the configuration value before it was defined. That's the principle how the ``Configuration`` provider works. Use first, define later. The configuration file will keep the logging settings. Put next lines into the ``config.yml`` file: .. code-block:: yaml log: level: "INFO" format: "[%(asctime)s] [%(levelname)s] [%(name)s]: %(message)s" At this point we can create the ``main()`` function. It will start our application. Put next lines into the ``__main__.py`` file: .. code-block:: python """Main module.""" from .containers import ApplicationContainer def main() -> None: """Run the application.""" container = ApplicationContainer() container.config.from_yaml('config.yml') container.configure_logging() if __name__ == '__main__': main() Dispatcher ---------- Now let's add the dispatcher. The dispatcher will control a list of the monitoring tasks. It will execute each task according to the configured schedule. The ``Monitor`` class is the base class for all the monitors. You can create different monitors subclassing it and implementing the ``check()`` method. .. image:: asyncio_images/class_1.png Let's create dispatcher and the monitor base classes. Edit ``monitors.py``: .. code-block:: python """Monitors module.""" import logging class Monitor: def __init__(self, check_every: int) -> None: self.check_every = check_every self.logger = logging.getLogger(self.full_name) @property def full_name(self) -> str: raise NotImplementedError() async def check(self) -> None: raise NotImplementedError() Edit ``dispatcher.py``: .. code-block:: python """Dispatcher module.""" import asyncio import logging import signal import time from typing import List from .monitors import Monitor logger = logging.getLogger(__name__) class Dispatcher: def __init__(self, monitors: List[Monitor]) -> None: self._monitors = monitors self._monitor_tasks: List[asyncio.Task] = [] self._stopping = False def run(self) -> None: asyncio.run(self.start()) async def start(self) -> None: logger.info('Dispatcher is starting up') for monitor in self._monitors: self._monitor_tasks.append( asyncio.create_task(self._run_monitor(monitor)), ) logger.info( 'Monitoring task has been started %s', monitor.full_name, ) asyncio.get_event_loop().add_signal_handler(signal.SIGTERM, self.stop) asyncio.get_event_loop().add_signal_handler(signal.SIGINT, self.stop) await asyncio.gather(*self._monitor_tasks, return_exceptions=True) self.stop() def stop(self) -> None: if self._stopping: return self._stopping = True logger.info('Dispatcher is shutting down') for task, monitor in zip(self._monitor_tasks, self._monitors): task.cancel() logger.info('Monitoring task has been stopped %s', monitor.full_name) logger.info('Dispatcher shutting down finished successfully') @staticmethod async def _run_monitor(monitor: Monitor) -> None: def _until_next(last: float) -> float: time_took = time.time() - last return monitor.check_every - time_took while True: time_start = time.time() try: await monitor.check() except asyncio.CancelledError: break except Exception: monitor.logger.exception('Error running monitoring check') await asyncio.sleep(_until_next(last=time_start)) .. warning:: REWORK Every component that we add must be added to the container. Edit ``containers.py``: .. code-block:: python :emphasize-lines: 8,22-27 """Application containers module.""" import logging import sys from dependency_injector import containers, providers from . import dispatcher class ApplicationContainer(containers.DeclarativeContainer): config = providers.Configuration() configure_logging = providers.Callable( logging.basicConfig, stream=sys.stdout, level=config.log.level, format=config.log.format, ) dispatcher = providers.Factory( dispatcher.Dispatcher, monitors=providers.List( # TODO: add monitors ), ) .. warning:: REWORK At the last let's use the dispatcher in the ``main()`` function. Edit ``__main__.py``: .. code-block:: python :emphasize-lines: 13-14 """Main module.""" from .containers import ApplicationContainer def main() -> None: """Run the application.""" container = ApplicationContainer() container.config.from_yaml('config.yml') container.configure_logging() dispatcher = container.dispatcher() dispatcher.run() if __name__ == '__main__': main() Finally let's start the container to check that all works. Run in the terminal: .. code-block:: bash docker-compose up The output should look like: .. code-block:: bash Starting monitoring-daemon-tutorial_monitor_1 ... done Attaching to monitoring-daemon-tutorial_monitor_1 monitor_1 | [2020-08-07 21:02:01,361] [INFO] [monitoringdaemon.dispatcher]: Dispatcher is starting up monitor_1 | [2020-08-07 21:02:01,364] [INFO] [monitoringdaemon.dispatcher]: Dispatcher is shutting down monitor_1 | [2020-08-07 21:02:01,364] [INFO] [monitoringdaemon.dispatcher]: Dispatcher shutting down finished successfully monitoring-daemon-tutorial_monitor_1 exited with code 0 Everything works properly. Dispatcher starts up and exits because there are no monitoring tasks. By the end of this section we have the application skeleton ready. In the next section will will add first monitoring task. HTTP monitor ------------ Add another monitor ------------------- Tests ----- Conclusion ---------- .. disqus::