backend/exhauster_analytics/analytics/services.py

148 lines
4.9 KiB
Python
Raw Normal View History

2023-02-18 23:51:02 +03:00
import pandas
from rest_framework.exceptions import NotFound
from exhauster_analytics.analytics.models import (
ExgausterSignal,
Record,
RecordApproximation,
ExgausterRecordSignal, ExgausterRecordApproximationSignal,
)
def get_signal_values(signals, approximation=None, time_from=None, time_until=None):
exhauster_signals = []
signals_by_id = {}
for signal in signals:
try:
if "." in signals:
x, y = map(
int, signal[signal.find("[") + 1 : signal.find("]")].split(".")
)
type = "digital"
else:
x, y = map(
int, signal[signal.find("[") + 1 : signal.find("]")].split(":")
)
type = "analog"
signal_obj = ExgausterSignal.objects.get(place_x=x, place_y=y, type=type)
signals_by_id[signal_obj.id] = signal
except (ExgausterSignal.DoesNotExist, ValueError):
raise NotFound("signal not found")
exhauster_signals.append(signal_obj)
if not approximation or approximation == 1:
if time_from:
if time_until:
records = Record.objects.filter(
timestamp__gte=time_from, timestamp__lte=time_until
)
else:
records = Record.objects.filter(timestamp__gte=time_from)
else:
if time_until:
records = Record.objects.filter(timestamp__lte=time_until)
else:
records = Record.objects.all()
vals = ExgausterRecordSignal.objects.filter(
record__in=records, signal__in=exhauster_signals
).values_list("signal", "value")
else:
if time_from:
if time_until:
records = RecordApproximation.objects.filter(
timestamp__gte=time_from,
timestamp__lte=time_until,
amount=approximation,
)
else:
records = RecordApproximation.objects.filter(
timestamp__gte=time_from, amount=approximation
)
else:
if time_until:
records = RecordApproximation.objects.filter(
timestamp__lte=time_until, amount=approximation
)
else:
records = RecordApproximation.objects.filter(amount=approximation)
vals = ExgausterRecordApproximationSignal.objects.filter(
record__in=records, signal__in=exhauster_signals
).values_list("signal_id", "value")
d = {}
for x, y in vals:
d.setdefault(signals_by_id[x], []).append(y)
return d
# function to parse signal mapping from xlsx file
def f(ex, num):
df = pandas.read_excel(
"Маппинг сигналов.xlsx", sheet_name=num, nrows=105, index_col=[4]
)
df = df.fillna(method="ffill")
for index, row in df.iterrows():
row = row.values.tolist()
s = index
if "." in s:
x, y = map(int, s[s.find("[") + 1 : s.find("]")].split("."))
else:
x, y = map(int, s[s.find("[") + 1 : s.find("]")].split(":"))
ExgausterSignal.objects.create(
exgauster=ex,
place_x=x,
place_y=y,
type=row[5],
comment=row[4],
active=bool(row[6]),
item=row[0],
characteristics=row[1],
characteristics_description=row[2],
item_name=row[3],
)
df = pandas.read_excel(
"Маппинг сигналов.xlsx", sheet_name=num, skiprows=105, nrows=4, index_col=[4]
)
df = df.fillna(method="ffill")
for index, row in df.iterrows():
row = row.values.tolist()
s = index
if "." in s:
x, y = map(int, s[s.find("[") + 1 : s.find("]")].split("."))
else:
x, y = map(int, s[s.find("[") + 1 : s.find("]")].split(":"))
ExgausterSignal.objects.create(
exgauster=ex,
place_x=x,
place_y=y,
type=row[5],
comment=row[4],
active=bool(row[6]),
item=row[0],
characteristics=row[1],
characteristics_description=row[2],
item_name=row[3],
)
df = pandas.read_excel(
"Маппинг сигналов.xlsx", sheet_name=num, skiprows=109, index_col=[4]
)
df = df.fillna(method="ffill")
for index, row in df.iterrows():
row = row.values.tolist()
s = index
if "." in s:
x, y = map(int, s[s.find("[") + 1 : s.find("]")].split("."))
else:
x, y = map(int, s[s.find("[") + 1 : s.find("]")].split(":"))
ExgausterSignal.objects.create(
exgauster=ex,
place_x=x,
place_y=y,
type=row[5],
comment=row[4],
active=bool(row[6]),
item=row[0],
item_name=row[3],
)