spaCy/website/usage/_facts-figures/_benchmarks-models.jade

104 lines
3.2 KiB
Plaintext
Raw Normal View History

2017-10-03 15:26:20 +03:00
//- 💫 DOCS > USAGE > FACTS & FIGURES > BENCHMARKS > MODEL COMPARISON
p
| In this section, we provide benchmark accuracies for the pre-trained
| model pipelines we distribute with spaCy. Evaluations are conducted
| end-to-end from raw text, with no "gold standard" pre-processing, over
💫 Interactive code examples, spaCy Universe and various docs improvements (#2274) * Integrate Python kernel via Binder * Add live model test for languages with examples * Update docs and code examples * Adjust margin (if not bootstrapped) * Add binder version to global config * Update terminal and executable code mixins * Pass attributes through infobox and section * Hide v-cloak * Fix example * Take out model comparison for now * Add meta text for compat * Remove chart.js dependency * Tidy up and simplify JS and port big components over to Vue * Remove chartjs example * Add Twitter icon * Add purple stylesheet option * Add utility for hand cursor (special cases only) * Add transition classes * Add small option for section * Add thumb object for small round thumbnail images * Allow unset code block language via "none" value (workaround to still allow unset language to default to DEFAULT_SYNTAX) * Pass through attributes * Add syntax highlighting definitions for Julia, R and Docker * Add website icon * Remove user survey from navigation * Don't hide GitHub icon on small screens * Make top navigation scrollable on small screens * Remove old resources page and references to it * Add Universe * Add helper functions for better page URL and title * Update site description * Increment versions * Update preview images * Update mentions of resources * Fix image * Fix social images * Fix problem with cover sizing and floats * Add divider and move badges into heading * Add docstrings * Reference converting section * Add section on converting word vectors * Move converting section to custom section and fix formatting * Remove old fastText example * Move extensions content to own section Keep weird ID to not break permalinks for now (we don't want to rewrite URLs if not absolutely necessary) * Use better component example and add factories section * Add note on larger model * Use better example for non-vector * Remove similarity in context section Only works via small models with tensors so has always been kind of confusing * Add note on init-model command * Fix lightning tour examples and make excutable if possible * Add spacy train CLI section to train * Fix formatting and add video * Fix formatting * Fix textcat example description (resolves #2246) * Add dummy file to try resolve conflict * Delete dummy file * Tidy up [ci skip] * Ensure sufficient height of loading container * Add loading animation to universe * Update Thebelab build and use better startup message * Fix asset versioning * Fix typo [ci skip] * Add note on project idea label
2018-04-29 03:06:46 +03:00
| text from a mix of genres where possible.
2017-10-03 15:26:20 +03:00
+aside("Methodology")
| The evaluation was conducted on raw text with no gold standard
| information. The parser, tagger and entity recognizer were trained on the
| #[+a("https://www.gabormelli.com/RKB/OntoNotes_Corpus") OntoNotes 5]
| corpus, the word vectors on #[+a("http://commoncrawl.org") Common Crawl].
2017-10-06 22:39:06 +03:00
+h(4, "benchmarks-models-english") English
2017-10-03 15:26:20 +03:00
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
+row
2017-11-08 03:06:30 +03:00
+cell #[+a("/models/en#en_core_web_sm") #[code en_core_web_sm]] 2.0.0
+cell("num") 2.x
+cell neural
2017-11-06 21:36:02 +03:00
+cell("num") 91.7
+cell("num") 85.3
+cell("num") 97.0
+cell("num") 10.1k
+cell("num") #[strong 35MB]
2017-10-03 15:26:20 +03:00
+row
+cell #[+a("/models/en#en_core_web_md") #[code en_core_web_md]] 2.0.0
+cell("num") 2.x
+cell neural
+cell("num") 91.7
+cell("num") #[strong 85.9]
+cell("num") 97.1
+cell("num") 10.0k
+cell("num") 115MB
2017-10-03 15:26:20 +03:00
+row
2017-11-08 03:06:30 +03:00
+cell #[+a("/models/en#en_core_web_lg") #[code en_core_web_lg]] 2.0.0
+cell("num") 2.x
+cell neural
2017-11-06 21:36:02 +03:00
+cell("num") #[strong 91.9]
+cell("num") #[strong 85.9]
+cell("num") #[strong 97.2]
+cell("num") 10.0k
+cell("num") 812MB
2017-10-03 15:26:20 +03:00
+row("divider")
+cell #[code en_core_web_sm] 1.2.0
+cell("num") 1.x
+cell linear
+cell("num") 86.6
+cell("num") 78.5
+cell("num") 96.6
2017-11-06 21:36:02 +03:00
+cell("num") #[strong 25.7k]
+cell("num") 50MB
2017-10-03 15:26:20 +03:00
+row
+cell #[code en_core_web_md] 1.2.1
+cell("num") 1.x
+cell linear
+cell("num") 90.6
+cell("num") 81.4
+cell("num") 96.7
+cell("num") 18.8k
+cell("num") 1GB
2017-10-06 22:39:06 +03:00
+h(4, "benchmarks-models-spanish") Spanish
2017-11-06 20:19:00 +03:00
+aside("Evaluation note")
| The NER accuracy refers to the "silver standard" annotations in the
| WikiNER corpus. Accuracy on these annotations tends to be higher than
| correct human annotations.
2017-10-06 22:39:06 +03:00
+table(["Model", "spaCy", "Type", "UAS", "NER F", "POS", "WPS", "Size"])
+row
2017-11-08 03:06:30 +03:00
+cell #[+a("/models/es#es_core_news_sm") #[code es_core_news_sm]] 2.0.0
2017-11-06 21:36:02 +03:00
+cell("num") 2.x
+cell("num") neural
+cell("num") 89.8
+cell("num") 88.7
+cell("num") #[strong 96.9]
+cell("num") #[em n/a]
+cell("num") #[strong 35MB]
2017-11-06 20:19:00 +03:00
+row
2017-11-08 03:06:30 +03:00
+cell #[+a("/models/es#es_core_news_md") #[code es_core_news_md]] 2.0.0
2017-11-06 21:36:02 +03:00
+cell("num") 2.x
+cell("num") neural
+cell("num") #[strong 90.2]
+cell("num") 89.0
+cell("num") 97.8
+cell("num") #[em n/a]
+cell("num") 93MB
2017-10-06 22:39:06 +03:00
+row("divider")
+cell #[code es_core_web_md] 1.1.0
each data in ["1.x", "linear", 87.5]
2017-11-06 21:36:02 +03:00
+cell("num")=data
+cell("num") #[strong 94.2]
+cell("num") 96.7
+cell("num") #[em n/a]
+cell("num") 377MB