2019-03-23 17:45:02 +03:00
---
title: Sentencizer
tag: class
2020-07-27 19:11:45 +03:00
source: spacy/pipeline/sentencizer.pyx
teaser: 'Pipeline component for rule-based sentence boundary detection'
api_base_class: /api/pipe
api_string_name: sentencizer
api_trainable: false
2019-03-23 17:45:02 +03:00
---
A simple pipeline component, to allow custom sentence boundary detection logic
that doesn't require the dependency parse. By default, sentence segmentation is
performed by the [`DependencyParser` ](/api/dependencyparser ), so the
`Sentencizer` lets you implement a simpler, rule-based strategy that doesn't
2020-07-27 19:11:45 +03:00
require a statistical model to be loaded.
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe` ](/api/language#add_pipe ) or in your
[`config.cfg` for training ](/usage/training#config ).
> #### Example
>
> ```python
> config = {"punct_chars": None}
> nlp.add_pipe("entity_ruler", config=config)
> ```
2020-08-17 17:45:24 +03:00
| Setting | Description |
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults if not set. Defaults to `None` . ~~Optional[List[str]]~~ | `None` |
2020-07-27 19:11:45 +03:00
```python
2020-09-12 18:05:10 +03:00
%%GITHUB_SPACY/spacy/pipeline/sentencizer.pyx
2020-07-27 19:11:45 +03:00
```
2019-03-23 17:45:02 +03:00
## Sentencizer.\_\_init\_\_ {#init tag="method"}
Initialize the sentencizer.
> #### Example
>
> ```python
2020-07-27 01:29:45 +03:00
> # Construction via add_pipe
> sentencizer = nlp.add_pipe("sentencizer")
2020-07-27 19:11:45 +03:00
>
> # Construction from class
> from spacy.pipeline import Sentencizer
> sentencizer = Sentencizer()
2019-03-23 17:45:02 +03:00
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------------------------------- |
| _keyword-only_ | | |
| `punct_chars` | Optional custom list of punctuation characters that mark sentence ends. See below for defaults. ~~Optional[List[str]]~~ |
2020-07-04 15:23:10 +03:00
```python
### punct_chars defaults
['!', '.', '?', '։ ', '؟', '۔ ', '܀', '܁ ', '܂ ', '߹', '।', '॥', '၊', '။', '።',
'፧', '፨', '᙮ ', '᜵ ', '᜶', '᠃ ', '᠉ ', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫',
'᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉',
'⸮', '⸼', '꓿ ', '꘎ ', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈',
'꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '! ', '. ', '? ',
'𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅',
'𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂',
'𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓',
'𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛',
'𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']
```
2019-03-23 17:45:02 +03:00
## Sentencizer.\_\_call\_\_ {#call tag="method"}
Apply the sentencizer on a `Doc` . Typically, this happens automatically after
the component has been added to the pipeline using
[`nlp.add_pipe` ](/api/language#add_pipe ).
> #### Example
>
> ```python
> from spacy.lang.en import English
>
> nlp = English()
2020-07-27 01:29:45 +03:00
> nlp.add_pipe("sentencizer")
2019-09-12 17:11:15 +03:00
> doc = nlp("This is a sentence. This is another sentence.")
2019-11-13 17:24:14 +03:00
> assert len(list(doc.sents)) == 2
2019-03-23 17:45:02 +03:00
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. ~~Doc~~ |
| **RETURNS** | The modified `Doc` with added sentence boundaries. ~~Doc~~ |
2019-03-23 17:45:02 +03:00
2020-07-27 19:11:45 +03:00
## Sentencizer.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order.
> #### Example
>
> ```python
> sentencizer = nlp.add_pipe("sentencizer")
> for doc in sentencizer.pipe(docs, batch_size=50):
> pass
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128` . ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
2020-07-27 19:11:45 +03:00
## Sentencizer.score {#score tag="method" new="3"}
Score a batch of examples.
> #### Example
>
> ```python
> scores = sentencizer.score(examples)
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | --------------------------------------------------------------------------------------------------------------------- |
| `examples` | The examples to score. ~~Iterable[Example]~~ |
| **RETURNS** | The scores, produced by [`Scorer.score_spans` ](/api/scorer#score_spans ). ~~Dict[str, Union[float, Dict[str, float]]~~ |
2020-07-27 19:11:45 +03:00
2019-03-23 17:45:02 +03:00
## Sentencizer.to_disk {#to_disk tag="method"}
Save the sentencizer settings (punctuation characters) a directory. Will create
a file `sentencizer.json` . This also happens automatically when you save an
`nlp` object with a sentencizer added to its pipeline.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> config = {"punct_chars": [".", "?", "!", "。"]}
> sentencizer = nlp.add_pipe("sentencizer", config=config)
> sentencizer.to_disk("/path/to/sentencizer.json")
2019-03-23 17:45:02 +03:00
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a JSON file, which will be created if it doesn't exist. Paths may be either strings or `Path` -like objects. ~~Union[str, Path]~~ |
2019-03-23 17:45:02 +03:00
## Sentencizer.from_disk {#from_disk tag="method"}
Load the sentencizer settings from a file. Expects a JSON file. This also
happens automatically when you load an `nlp` object or model with a sentencizer
added to its pipeline.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> sentencizer = nlp.add_pipe("sentencizer")
2019-03-23 17:45:02 +03:00
> sentencizer.from_disk("/path/to/sentencizer.json")
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a JSON file. Paths may be either strings or `Path` -like objects. ~~Union[str, Path]~~ |
| **RETURNS** | The modified `Sentencizer` object. ~~Sentencizer~~ |
2019-03-23 17:45:02 +03:00
## Sentencizer.to_bytes {#to_bytes tag="method"}
Serialize the sentencizer settings to a bytestring.
> #### Example
>
> ```python
2020-07-27 19:11:45 +03:00
> config = {"punct_chars": [".", "?", "!", "。"]}
> sentencizer = nlp.add_pipe("sentencizer", config=config)
2019-03-23 17:45:02 +03:00
> sentencizer_bytes = sentencizer.to_bytes()
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ----------- | ------------------------------ |
| **RETURNS** | The serialized data. ~~bytes~~ |
2019-03-23 17:45:02 +03:00
## Sentencizer.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> sentencizer_bytes = sentencizer.to_bytes()
2020-07-27 19:11:45 +03:00
> sentencizer = nlp.add_pipe("sentencizer")
2019-03-23 17:45:02 +03:00
> sentencizer.from_bytes(sentencizer_bytes)
> ```
2020-08-17 17:45:24 +03:00
| Name | Description |
| ------------ | -------------------------------------------------- |
| `bytes_data` | The bytestring to load. ~~bytes~~ |
| **RETURNS** | The modified `Sentencizer` object. ~~Sentencizer~~ |