spaCy/examples/training/textcat_example_data/textcatjsonl_to_trainjson.py

54 lines
1.5 KiB
Python
Raw Normal View History

Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 23:31:31 +03:00
from pathlib import Path
import plac
import spacy
from spacy.gold import docs_to_json
import srsly
import sys
@plac.annotations(
model=("Model name. Defaults to 'en'.", "option", "m", str),
input_file=("Input file (jsonl)", "positional", None, Path),
output_dir=("Output directory", "positional", None, Path),
n_texts=("Number of texts to convert", "option", "t", int),
)
def convert(model='en', input_file=None, output_dir=None, n_texts=0):
# Load model with tokenizer + sentencizer only
nlp = spacy.load(model)
nlp.disable_pipes(*nlp.pipe_names)
sentencizer = nlp.create_pipe("sentencizer")
nlp.add_pipe(sentencizer, first=True)
texts = []
cats = []
count = 0
if not input_file.exists():
print("Input file not found:", input_file)
sys.exit(1)
else:
with open(input_file) as fileh:
for line in fileh:
data = srsly.json_loads(line)
texts.append(data["text"])
cats.append(data["cats"])
if output_dir is not None:
output_dir = Path(output_dir)
if not output_dir.exists():
output_dir.mkdir()
else:
output_dir = Path(".")
docs = []
for i, doc in enumerate(nlp.pipe(texts)):
doc.cats = cats[i]
docs.append(doc)
if n_texts > 0 and count == n_texts:
break
count += 1
srsly.write_json(output_dir / input_file.with_suffix(".json"), [docs_to_json(docs)])
if __name__ == "__main__":
plac.call(convert)