mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-14 03:26:24 +03:00
50 lines
1.5 KiB
ReStructuredText
50 lines
1.5 KiB
ReStructuredText
|
Lexical Lookup
|
||
|
--------------
|
||
|
|
||
|
Where possible, spaCy computes information over lexical *types*, rather than
|
||
|
*tokens*. If you process a large batch of text, the number of unique types
|
||
|
you will see will grow exponentially slower than the number of tokens --- so
|
||
|
it's much more efficient to compute over types. And, in small samples, we generally
|
||
|
want to know about the distribution of a word in the language at large ---
|
||
|
which again, is type-based information.
|
||
|
|
||
|
You can access the lexical features via the Token object, but you can also look them
|
||
|
up in the vocabulary directly:
|
||
|
|
||
|
>>> from spacy.en import English
|
||
|
>>> nlp = English()
|
||
|
>>> lexeme = nlp.vocab[u'Amazon']
|
||
|
|
||
|
.. py:class:: vocab.Vocab(self, data_dir=None, lex_props_getter=None)
|
||
|
|
||
|
.. py:method:: __len__(self) --> int
|
||
|
|
||
|
.. py:method:: __getitem__(self, id: int) --> unicode
|
||
|
|
||
|
.. py:method:: __getitem__(self, string: unicode) --> int
|
||
|
|
||
|
.. py:method:: __setitem__(self, py_str: unicode, props: Dict[str, int[float]) --> None
|
||
|
|
||
|
.. py:method:: dump(self, loc: unicode) --> None
|
||
|
|
||
|
.. py:method:: load_lexemes(self, loc: unicode) --> None
|
||
|
|
||
|
.. py:method:: load_vectors(self, loc: unicode) --> None
|
||
|
|
||
|
|
||
|
.. py:class:: strings.StringStore(self)
|
||
|
|
||
|
.. py:method:: __len__(self) --> int
|
||
|
|
||
|
.. py:method:: __getitem__(self, id: int) --> unicode
|
||
|
|
||
|
.. py:method:: __getitem__(self, string: bytes) --> id
|
||
|
|
||
|
.. py:method:: __getitem__(self, string: unicode) --> id
|
||
|
|
||
|
.. py:method:: dump(self, loc: unicode) --> None
|
||
|
|
||
|
.. py:method:: load(self, loc: unicode) --> None
|
||
|
|
||
|
|