spaCy/spacy/syntax/iterators.pyx

122 lines
4.2 KiB
Cython
Raw Normal View History

2017-04-15 14:05:15 +03:00
# coding: utf-8
from __future__ import unicode_literals
from ..parts_of_speech cimport NOUN, PROPN, PRON, VERB, AUX
2016-11-24 13:47:20 +03:00
def english_noun_chunks(obj):
2017-04-15 14:05:15 +03:00
"""
Detect base noun phrases from a dependency parse.
Works on both Doc and Span.
"""
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj',
'attr', 'ROOT']
doc = obj.doc # Ensure works on both Doc and Span.
np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings['conj']
np_label = doc.vocab.strings['NP']
seen = set()
2016-11-24 13:47:20 +03:00
for i, word in enumerate(obj):
if word.pos not in (NOUN, PROPN, PRON):
continue
# Prevent nested chunks from being produced
if word.i in seen:
continue
if word.dep in np_deps:
if any(w.i in seen for w in word.subtree):
continue
seen.update(j for j in range(word.left_edge.i, word.i+1))
yield word.left_edge.i, word.i+1, np_label
elif word.dep == conj:
head = word.head
while head.dep == conj and head.head.i < head.i:
head = head.head
# If the head is an NP, and we're coordinated to it, we're an NP
if head.dep in np_deps:
if any(w.i in seen for w in word.subtree):
continue
seen.update(j for j in range(word.left_edge.i, word.i+1))
yield word.left_edge.i, word.i+1, np_label
# this iterator extracts spans headed by NOUNs starting from the left-most
# syntactic dependent until the NOUN itself
# for close apposition and measurement construction, the span is sometimes
# extended to the right of the NOUN
# example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not
# just "eine Tasse", same for "das Thema Familie"
def german_noun_chunks(obj):
labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app']
doc = obj.doc # Ensure works on both Doc and Span.
np_label = doc.vocab.strings['NP']
np_deps = set(doc.vocab.strings[label] for label in labels)
close_app = doc.vocab.strings['nk']
2016-05-03 18:19:05 +03:00
rbracket = 0
for i, word in enumerate(obj):
2016-05-03 18:19:05 +03:00
if i < rbracket:
continue
if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:
rbracket = word.i+1
# try to extend the span to the right
# to capture close apposition/measurement constructions
for rdep in doc[word.i].rights:
if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app:
rbracket = rdep.i+1
2016-05-04 08:40:38 +03:00
yield word.left_edge.i, rbracket, np_label
def es_noun_chunks(obj):
doc = obj.doc
np_label = doc.vocab.strings['NP']
left_labels = ['det', 'fixed', 'neg'] #['nunmod', 'det', 'appos', 'fixed']
right_labels = ['flat', 'fixed', 'compound', 'neg']
stop_labels = ['punct']
np_left_deps = [doc.vocab.strings[label] for label in left_labels]
np_right_deps = [doc.vocab.strings[label] for label in right_labels]
stop_deps = [doc.vocab.strings[label] for label in stop_labels]
def next_token(token):
try:
return token.nbor()
except:
return None
def noun_bounds(root):
def is_verb_token(token):
return token.pos in [VERB, AUX]
left_bound = root
for token in reversed(list(root.lefts)):
if token.dep in np_left_deps:
left_bound = token
right_bound = root
for token in root.rights:
if (token.dep in np_right_deps):
left, right = noun_bounds(token)
if list(filter(lambda t: is_verb_token(t) or t.dep in stop_deps, doc[left_bound.i: right.i])):
break
else:
right_bound = right
return left_bound, right_bound
token = doc[0]
while token and token.i < len(doc):
if token.pos in [PROPN, NOUN, PRON]:
left, right = noun_bounds(token)
yield left.i, right.i+1, np_label
token = right
token = next_token(token)
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks, 'es': es_noun_chunks,
None: english_noun_chunks, '': english_noun_chunks}