2023-04-20 17:55:40 +03:00
|
|
|
import pytest
|
2023-06-26 12:41:03 +03:00
|
|
|
|
2023-04-20 17:55:40 +03:00
|
|
|
from spacy.tokens import Doc
|
|
|
|
|
|
|
|
|
|
|
|
def test_noun_chunks_is_parsed(la_tokenizer):
|
|
|
|
"""Test that noun_chunks raises Value Error for 'la' language if Doc is not parsed.
|
|
|
|
To check this test, we're constructing a Doc
|
|
|
|
with a new Vocab here and forcing is_parsed to 'False'
|
|
|
|
to make sure the noun chunks don't run.
|
|
|
|
"""
|
|
|
|
doc = la_tokenizer("Haec est sententia.")
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
list(doc.noun_chunks)
|
|
|
|
|
|
|
|
|
|
|
|
LA_NP_TEST_EXAMPLES = [
|
|
|
|
(
|
|
|
|
"Haec narrantur a poetis de Perseo.",
|
|
|
|
["DET", "VERB", "ADP", "NOUN", "ADP", "PROPN", "PUNCT"],
|
|
|
|
["nsubj:pass", "ROOT", "case", "obl", "case", "obl", "punct"],
|
|
|
|
[1, 0, -1, -1, -3, -1, -5],
|
|
|
|
["poetis", "Perseo"],
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Perseus autem in sinu matris dormiebat.",
|
|
|
|
["NOUN", "ADV", "ADP", "NOUN", "NOUN", "VERB", "PUNCT"],
|
|
|
|
["nsubj", "discourse", "case", "obl", "nmod", "ROOT", "punct"],
|
|
|
|
[5, 4, 3, -1, -1, 0, -1],
|
|
|
|
["Perseus", "sinu matris"],
|
|
|
|
),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"text,pos,deps,heads,expected_noun_chunks", LA_NP_TEST_EXAMPLES
|
|
|
|
)
|
|
|
|
def test_la_noun_chunks(la_tokenizer, text, pos, deps, heads, expected_noun_chunks):
|
|
|
|
tokens = la_tokenizer(text)
|
|
|
|
|
|
|
|
assert len(heads) == len(pos)
|
|
|
|
doc = Doc(
|
|
|
|
tokens.vocab,
|
|
|
|
words=[t.text for t in tokens],
|
|
|
|
heads=[head + i for i, head in enumerate(heads)],
|
|
|
|
deps=deps,
|
|
|
|
pos=pos,
|
|
|
|
)
|
|
|
|
|
|
|
|
noun_chunks = list(doc.noun_chunks)
|
|
|
|
assert len(noun_chunks) == len(expected_noun_chunks)
|
|
|
|
for i, np in enumerate(noun_chunks):
|
|
|
|
assert np.text == expected_noun_chunks[i]
|