spaCy/spacy/cli/train.py

138 lines
5.1 KiB
Python
Raw Normal View History

2017-03-23 13:08:41 +03:00
# coding: utf8
from __future__ import unicode_literals, division, print_function
import json
from collections import defaultdict
import cytoolz
from pathlib import Path
import dill
2017-03-23 13:08:41 +03:00
from ..tokens.doc import Doc
2017-03-23 13:08:41 +03:00
from ..scorer import Scorer
from ..gold import GoldParse, merge_sents
from ..gold import read_json_file as read_gold_json
2017-05-08 00:25:29 +03:00
from ..util import prints
2017-03-23 13:08:41 +03:00
from .. import util
from .. import displacy
2017-03-23 13:08:41 +03:00
def train(language, output_dir, train_data, dev_data, n_iter, n_sents,
tagger, parser, ner, parser_L1):
2017-05-08 00:25:29 +03:00
output_path = util.ensure_path(output_dir)
train_path = util.ensure_path(train_data)
dev_path = util.ensure_path(dev_data)
if not output_path.exists():
prints(output_path, title="Output directory not found", exits=True)
if not train_path.exists():
prints(train_path, title="Training data not found", exits=True)
if dev_path and not dev_path.exists():
prints(dev_path, title="Development data not found", exits=True)
2017-03-23 13:08:41 +03:00
lang = util.get_lang_class(language)
2017-03-26 15:16:52 +03:00
parser_cfg = {
'pseudoprojective': True,
2017-03-26 15:24:07 +03:00
'L1': parser_L1,
2017-03-26 15:16:52 +03:00
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.parser_features}
entity_cfg = {
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.entity_features}
tagger_cfg = {
'n_iter': n_iter,
'lang': language,
'features': lang.Defaults.tagger_features}
gold_train = list(read_gold_json(train_path, limit=n_sents))
gold_dev = list(read_gold_json(dev_path, limit=n_sents)) if dev_path else None
train_model(lang, gold_train, gold_dev, output_path, n_iter)
2017-03-26 12:48:17 +03:00
if gold_dev:
scorer = evaluate(lang, gold_dev, output_path)
print_results(scorer)
2017-03-23 13:08:41 +03:00
def train_config(config):
2017-05-08 00:25:29 +03:00
config_path = util.ensure_path(config)
2017-03-23 13:08:41 +03:00
if not config_path.is_file():
2017-05-08 00:25:29 +03:00
prints(config_path, title="Config file not found", exits=True)
2017-03-23 13:08:41 +03:00
config = json.load(config_path)
for setting in []:
if setting not in config.keys():
2017-05-08 00:25:29 +03:00
prints("%s not found in config file." % setting, title="Missing setting")
2017-03-23 13:08:41 +03:00
def train_model(Language, train_data, dev_data, output_path, n_iter, **cfg):
print("Itn.\tDep. Loss\tUAS\tNER F.\tTag %\tToken %")
2017-03-23 13:08:41 +03:00
nlp = Language(pipeline=['token_vectors', 'tags', 'dependencies'])
# TODO: Get spaCy using Thinc's trainer and optimizer
with nlp.begin_training(train_data, **cfg) as (trainer, optimizer):
for itn, epoch in enumerate(trainer.epochs(n_iter, gold_preproc=True)):
losses = defaultdict(float)
to_render = []
for i, (docs, golds) in enumerate(epoch):
state = nlp.update(docs, golds, drop=0., sgd=optimizer)
losses['dep_loss'] += state.get('parser_loss', 0.0)
to_render.insert(0, nlp(docs[-1].text))
to_render[0].user_data['title'] = "Batch %d" % i
with Path('/tmp/entities.html').open('w') as file_:
html = displacy.render(to_render[:5], style='ent', page=True,
options={'compact': True})
file_.write(html)
with Path('/tmp/parses.html').open('w') as file_:
html = displacy.render(to_render[:5], style='dep', page=True,
options={'compact': True})
file_.write(html)
if dev_data:
dev_scores = trainer.evaluate(dev_data).scores
else:
dev_scores = defaultdict(float)
print_progress(itn, losses, dev_scores)
with (output_path / 'model.bin').open('wb') as file_:
dill.dump(nlp, file_, -1)
#nlp.to_disk(output_path, tokenizer=False)
2017-03-23 13:08:41 +03:00
def evaluate(Language, gold_tuples, path):
with (path / 'model.bin').open('rb') as file_:
nlp = dill.load(file_)
2017-03-23 13:08:41 +03:00
scorer = Scorer()
for raw_text, sents in gold_tuples:
sents = merge_sents(sents)
for annot_tuples, brackets in sents:
if raw_text is None:
tokens = Doc(nlp.vocab, words=annot_tuples[1])
state = None
for proc in nlp.pipeline:
state = proc(tokens, state=state)
2017-03-23 13:08:41 +03:00
else:
tokens = nlp(raw_text)
gold = GoldParse.from_annot_tuples(tokens, annot_tuples)
scorer.score(tokens, gold)
return scorer
def print_progress(itn, losses, dev_scores):
2017-05-08 00:25:29 +03:00
# TODO: Fix!
scores = {}
for col in ['dep_loss', 'uas', 'tags_acc', 'token_acc', 'ents_f']:
scores[col] = 0.0
scores.update(losses)
scores.update(dev_scores)
tpl = '{:d}\t{dep_loss:.3f}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}'
print(tpl.format(itn, **scores))
2017-03-23 13:08:41 +03:00
def print_results(scorer):
2017-03-26 15:16:52 +03:00
results = {
'TOK': '%.2f' % scorer.token_acc,
'POS': '%.2f' % scorer.tags_acc,
'UAS': '%.2f' % scorer.uas,
'LAS': '%.2f' % scorer.las,
'NER P': '%.2f' % scorer.ents_p,
'NER R': '%.2f' % scorer.ents_r,
'NER F': '%.2f' % scorer.ents_f}
2017-03-23 13:08:41 +03:00
util.print_table(results, title="Results")