spaCy/bin/parser/conll_train.py

254 lines
8.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
import os
from os import path
import shutil
import io
import random
import time
import gzip
import re
import numpy
import plac
import cProfile
import pstats
import spacy.util
from spacy.en import English
from spacy.gold import GoldParse
from spacy.syntax.util import Config
from spacy.syntax.arc_eager import ArcEager
from spacy.syntax.parser import Parser, get_templates
from spacy.syntax.beam_parser import BeamParser
from spacy.scorer import Scorer
from spacy.tagger import Tagger
from spacy.syntax.nonproj import PseudoProjectivity
from spacy.syntax import _parse_features as pf
# Last updated for spaCy v0.97
def read_conll(file_, n=0):
"""Read a standard CoNLL/MALT-style format"""
text = file_.read().strip()
sent_strs = re.split(r'\n\s*\n', text)
for sent_id, sent_str in enumerate(sent_strs):
if not sent_str.strip():
continue
ids = []
words = []
heads = []
labels = []
tags = []
for i, line in enumerate(sent_str.strip().split('\n')):
word, pos_string, head_idx, label = _parse_line(line)
words.append(word)
if head_idx < 0:
head_idx = i
ids.append(i)
heads.append(head_idx)
labels.append(label)
tags.append(pos_string)
annot = (ids, words, tags, heads, labels, ['O'] * len(ids))
yield (None, [(annot, None)])
if n and sent_id >= n:
break
def _parse_line(line):
pieces = line.split()
if len(pieces) == 4:
word, pos, head_idx, label = pieces
head_idx = int(head_idx)
elif len(pieces) == 15:
id_ = int(pieces[0].split('_')[-1])
word = pieces[1]
pos = pieces[4]
head_idx = int(pieces[8])-1
label = pieces[10]
else:
id_ = int(pieces[0].split('_')[-1])
word = pieces[1]
pos = pieces[4]
head_idx = int(pieces[6])-1
label = pieces[7]
if head_idx < 0:
label = 'ROOT'
return word, pos, head_idx, label
def print_words(strings, words, embeddings):
ids = {strings[word]: word for word in words}
vectors = {}
for key, values in embeddings[5]:
if key in ids:
vectors[strings[key]] = values
for word in words:
if word in vectors:
print(word, vectors[word])
def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False):
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger.tag_from_strings(tokens, annot_tuples[2])
nlp.parser(tokens)
gold = GoldParse(tokens, annot_tuples, make_projective=False)
scorer.score(tokens, gold, verbose=verbose, punct_labels=('--', 'p', 'punct'))
def train(Language, gold_tuples, model_dir, dev_loc, n_iter=15, feat_set=u'basic',
learn_rate=0.001, update_step='sgd_cm',
batch_norm=False, seed=0, gold_preproc=False, force_gold=False):
dep_model_dir = path.join(model_dir, 'deps')
pos_model_dir = path.join(model_dir, 'pos')
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
os.mkdir(dep_model_dir)
os.mkdir(pos_model_dir)
if feat_set != 'neural':
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
labels=ArcEager.get_labels(gold_tuples))
else:
feat_groups = [
(pf.core_words, 8),
(pf.core_tags, 4),
(pf.core_labels, 4),
(pf.core_shapes, 4),
([f[0] for f in pf.valencies], 2)
]
slots = []
vector_widths = []
feat_set = []
input_length = 0
for i, (feat_group, width) in enumerate(feat_groups):
feat_set.extend((f,) for f in feat_group)
slots += [i] * len(feat_group)
vector_widths.append(width)
input_length += width * len(feat_group)
hidden_layers = [128] * 5
rho = 1e-4
Config.write(dep_model_dir, 'config',
model='neural',
seed=seed,
labels=ArcEager.get_labels(gold_tuples),
feat_set=feat_set,
vector_widths=vector_widths,
slots=slots,
hidden_layers=hidden_layers,
update_step=update_step,
batch_norm=batch_norm,
eta=learn_rate,
mu=0.9,
ensemble_size=1,
rho=rho)
nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
for word in nlp.vocab:
word.norm = word.orth
words = list(nlp.vocab)
top5k = numpy.ndarray(shape=(10000, len(word.vector)), dtype='float32')
norms = numpy.ndarray(shape=(10000,), dtype='float32')
for i in range(10000):
if i >= 400 and words[i].has_vector:
top5k[i] = words[i].vector
norms[i] = numpy.sqrt(sum(top5k[i] ** 2))
else:
# Make these way off values, to make big distance.
top5k[i] = 100.0
norms[i] = 100.0
print("Setting vectors")
for word in words[10000:]:
if word.has_vector:
cosines = numpy.dot(top5k, word.vector)
cosines /= norms * numpy.sqrt(sum(word.vector ** 2))
most_similar = words[numpy.argmax(cosines)]
word.norm = most_similar.norm
else:
word.norm = word.shape
print(nlp.parser.model.widths)
print("Itn.\tP.Loss\tPruned\tTrain\tDev\tSize")
last_score = 0.0
nr_trimmed = 0
eg_seen = 0
loss = 0
for itn in range(n_iter):
random.shuffle(gold_tuples)
for _, sents in gold_tuples:
for annot_tuples, _ in sents:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger.tag_from_strings(tokens, annot_tuples[2])
gold = GoldParse(tokens, annot_tuples)
loss += nlp.parser.train(tokens, gold)
eg_seen += 1
if eg_seen % 10000 == 0:
scorer = Scorer()
with io.open(dev_loc, 'r', encoding='utf8') as file_:
for _, sents in read_conll(file_):
for annot_tuples, _ in sents:
score_model(scorer, nlp, None, annot_tuples)
train_scorer = Scorer()
for _, sents in gold_tuples[:1000]:
for annot_tuples, _ in sents:
score_model(train_scorer, nlp, None, annot_tuples)
print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%d' % (itn, int(loss), nr_trimmed,
train_scorer.uas, scorer.uas,
nlp.parser.model.mem.size))
loss = 0
if feat_set != 'basic':
nlp.parser.model.eta *= 0.99
threshold = 0.05 * (1.05 ** itn)
nr_trimmed = nlp.parser.model.sparsify_embeddings(threshold, True)
nlp.end_training(model_dir)
return nlp
@plac.annotations(
train_loc=("Location of CoNLL 09 formatted training file"),
dev_loc=("Location of CoNLL 09 formatted development file"),
model_dir=("Location of output model directory"),
n_iter=("Number of training iterations", "option", "i", int),
batch_norm=("Use batch normalization and residual connections", "flag", "b"),
update_step=("Update step", "option", "u", str),
learn_rate=("Learn rate", "option", "e", float),
neural=("Use neural network?", "flag", "N")
)
def main(train_loc, dev_loc, model_dir, n_iter=15, neural=False, batch_norm=False,
learn_rate=0.001, update_step='sgd_cm'):
with io.open(train_loc, 'r', encoding='utf8') as file_:
train_sents = list(read_conll(file_))
# preprocess training data here before ArcEager.get_labels() is called
train_sents = PseudoProjectivity.preprocess_training_data(train_sents)
nlp = train(English, train_sents, model_dir, dev_loc, n_iter=n_iter,
feat_set='neural' if neural else 'basic',
batch_norm=batch_norm,
learn_rate=learn_rate,
update_step=update_step)
scorer = Scorer()
with io.open(dev_loc, 'r', encoding='utf8') as file_:
for _, sents in read_conll(file_):
for annot_tuples, _ in sents:
score_model(scorer, nlp, None, annot_tuples)
print('TOK', scorer.token_acc)
print('POS', scorer.tags_acc)
print('UAS', scorer.uas)
print('LAS', scorer.las)
if __name__ == '__main__':
plac.call(main)