spaCy/spacy/pipeline/attributeruler.py

267 lines
9.4 KiB
Python
Raw Normal View History

Add AttributeRuler for token attribute exceptions (#5842) * Add AttributeRuler for token attribute exceptions Add the `AttributeRuler` to handle exceptions for token-level attributes. The `AttributeRuler` uses `Matcher` patterns to identify target spans and applies the specified attributes to the token at the provided index in the matched span. A negative index can be used to index from the end of the matched span. The retokenizer is used to "merge" the individual tokens and assign them the provided attributes. Helper functions can import existing tag maps and morph rules to the corresponding `Matcher` patterns. There is an additional minor bug fix for `MORPH` attributes in the retokenizer to correctly normalize the values and to handle `MORPH` alongside `_` in an attrs dict. * Fix default name * Update name in error message * Extend AttributeRuler functionality * Add option to initialize with a dict of AttributeRuler patterns * Instead of silently discarding overlapping matches (the default behavior for the retokenizer if only the attrs differ), split the matches into disjoint sets and retokenize each set separately. This allows, for instance, one pattern to set the POS and another pattern to set the lemma. (If two matches modify the same attribute, it looks like the attrs are applied in the order they were added, but it may not be deterministic?) * Improve types * Sort spans before processing * Fix index boundaries in Span * Refactor retokenizer to separate attrs methods Add top-level `normalize_token_attrs` and `set_token_attrs` methods. * Update AttributeRuler to use refactored methods Update `AttributeRuler` to replace use of full retokenizer with only the relevant methods for normalizing and setting attributes for a single token. * Update spacy/pipeline/attributeruler.py Co-authored-by: Ines Montani <ines@ines.io> * Make API more similar to EntityRuler * Add `AttributeRuler.add_patterns` to add patterns from a list of dicts * Return list of dicts as property `AttributeRuler.patterns` * Make attrs_unnormed private * Add test loading patterns from assets * Revert "Fix index boundaries in Span" This reverts commit 8f8a5c33861bff2d7c3f19914e289139ab3a2c28. * Add Span index boundary checks (#5861) * Add Span index boundary checks * Return Span-specific IndexError in all cases * Simplify and fix if/else Co-authored-by: Ines Montani <ines@ines.io>
2020-08-04 18:02:39 +03:00
import srsly
from typing import List, Dict, Union, Iterable, Any, Optional
from pathlib import Path
from .pipe import Pipe
from ..errors import Errors
from ..language import Language
from ..matcher import Matcher
from ..symbols import IDS
from ..tokens import Doc, Span
from ..tokens._retokenize import normalize_token_attrs, set_token_attrs
from ..vocab import Vocab
from .. import util
MatcherPatternType = List[Dict[Union[int, str], Any]]
AttributeRulerPatternType = Dict[str, Union[MatcherPatternType, Dict, int]]
2020-08-05 17:00:59 +03:00
@Language.factory("attribute_ruler")
Add AttributeRuler for token attribute exceptions (#5842) * Add AttributeRuler for token attribute exceptions Add the `AttributeRuler` to handle exceptions for token-level attributes. The `AttributeRuler` uses `Matcher` patterns to identify target spans and applies the specified attributes to the token at the provided index in the matched span. A negative index can be used to index from the end of the matched span. The retokenizer is used to "merge" the individual tokens and assign them the provided attributes. Helper functions can import existing tag maps and morph rules to the corresponding `Matcher` patterns. There is an additional minor bug fix for `MORPH` attributes in the retokenizer to correctly normalize the values and to handle `MORPH` alongside `_` in an attrs dict. * Fix default name * Update name in error message * Extend AttributeRuler functionality * Add option to initialize with a dict of AttributeRuler patterns * Instead of silently discarding overlapping matches (the default behavior for the retokenizer if only the attrs differ), split the matches into disjoint sets and retokenize each set separately. This allows, for instance, one pattern to set the POS and another pattern to set the lemma. (If two matches modify the same attribute, it looks like the attrs are applied in the order they were added, but it may not be deterministic?) * Improve types * Sort spans before processing * Fix index boundaries in Span * Refactor retokenizer to separate attrs methods Add top-level `normalize_token_attrs` and `set_token_attrs` methods. * Update AttributeRuler to use refactored methods Update `AttributeRuler` to replace use of full retokenizer with only the relevant methods for normalizing and setting attributes for a single token. * Update spacy/pipeline/attributeruler.py Co-authored-by: Ines Montani <ines@ines.io> * Make API more similar to EntityRuler * Add `AttributeRuler.add_patterns` to add patterns from a list of dicts * Return list of dicts as property `AttributeRuler.patterns` * Make attrs_unnormed private * Add test loading patterns from assets * Revert "Fix index boundaries in Span" This reverts commit 8f8a5c33861bff2d7c3f19914e289139ab3a2c28. * Add Span index boundary checks (#5861) * Add Span index boundary checks * Return Span-specific IndexError in all cases * Simplify and fix if/else Co-authored-by: Ines Montani <ines@ines.io>
2020-08-04 18:02:39 +03:00
def make_attribute_ruler(
nlp: Language,
name: str,
pattern_dicts: Optional[Iterable[AttributeRulerPatternType]] = None,
):
return AttributeRuler(nlp.vocab, name, pattern_dicts=pattern_dicts)
class AttributeRuler(Pipe):
"""Set token-level attributes for tokens matched by Matcher patterns.
Additionally supports importing patterns from tag maps and morph rules.
DOCS: https://spacy.io/api/attributeruler
"""
def __init__(
self,
vocab: Vocab,
name: str = "attribute_ruler",
*,
pattern_dicts: Optional[Iterable[AttributeRulerPatternType]] = None,
) -> None:
"""Initialize the AttributeRuler.
vocab (Vocab): The vocab.
name (str): The pipe name. Defaults to "attribute_ruler".
pattern_dicts (Iterable[Dict]): A list of pattern dicts with the keys as
the arguments to AttributeRuler.add (`patterns`/`attrs`/`index`) to add
as patterns.
RETURNS (AttributeRuler): The AttributeRuler component.
DOCS: https://spacy.io/api/attributeruler#init
"""
self.name = name
self.vocab = vocab
self.matcher = Matcher(self.vocab)
self.attrs = []
2020-08-05 17:00:59 +03:00
self._attrs_unnormed = [] # store for reference
Add AttributeRuler for token attribute exceptions (#5842) * Add AttributeRuler for token attribute exceptions Add the `AttributeRuler` to handle exceptions for token-level attributes. The `AttributeRuler` uses `Matcher` patterns to identify target spans and applies the specified attributes to the token at the provided index in the matched span. A negative index can be used to index from the end of the matched span. The retokenizer is used to "merge" the individual tokens and assign them the provided attributes. Helper functions can import existing tag maps and morph rules to the corresponding `Matcher` patterns. There is an additional minor bug fix for `MORPH` attributes in the retokenizer to correctly normalize the values and to handle `MORPH` alongside `_` in an attrs dict. * Fix default name * Update name in error message * Extend AttributeRuler functionality * Add option to initialize with a dict of AttributeRuler patterns * Instead of silently discarding overlapping matches (the default behavior for the retokenizer if only the attrs differ), split the matches into disjoint sets and retokenize each set separately. This allows, for instance, one pattern to set the POS and another pattern to set the lemma. (If two matches modify the same attribute, it looks like the attrs are applied in the order they were added, but it may not be deterministic?) * Improve types * Sort spans before processing * Fix index boundaries in Span * Refactor retokenizer to separate attrs methods Add top-level `normalize_token_attrs` and `set_token_attrs` methods. * Update AttributeRuler to use refactored methods Update `AttributeRuler` to replace use of full retokenizer with only the relevant methods for normalizing and setting attributes for a single token. * Update spacy/pipeline/attributeruler.py Co-authored-by: Ines Montani <ines@ines.io> * Make API more similar to EntityRuler * Add `AttributeRuler.add_patterns` to add patterns from a list of dicts * Return list of dicts as property `AttributeRuler.patterns` * Make attrs_unnormed private * Add test loading patterns from assets * Revert "Fix index boundaries in Span" This reverts commit 8f8a5c33861bff2d7c3f19914e289139ab3a2c28. * Add Span index boundary checks (#5861) * Add Span index boundary checks * Return Span-specific IndexError in all cases * Simplify and fix if/else Co-authored-by: Ines Montani <ines@ines.io>
2020-08-04 18:02:39 +03:00
self.indices = []
if pattern_dicts:
self.add_patterns(pattern_dicts)
def __call__(self, doc: Doc) -> Doc:
"""Apply the attributeruler to a Doc and set all attribute exceptions.
doc (Doc): The document to process.
RETURNS (Doc): The processed Doc.
DOCS: https://spacy.io/api/attributeruler#call
"""
matches = self.matcher(doc)
for match_id, start, end in matches:
span = Span(doc, start, end, label=match_id)
attrs = self.attrs[span.label]
index = self.indices[span.label]
try:
token = span[index]
except IndexError:
raise ValueError(
Errors.E1001.format(
patterns=self.matcher.get(span.label),
span=[t.text for t in span],
index=index,
)
)
set_token_attrs(token, attrs)
return doc
def load_from_tag_map(
self, tag_map: Dict[str, Dict[Union[int, str], Union[int, str]]]
) -> None:
for tag, attrs in tag_map.items():
pattern = [{"TAG": tag}]
attrs, morph_attrs = _split_morph_attrs(attrs)
morph = self.vocab.morphology.add(morph_attrs)
attrs["MORPH"] = self.vocab.strings[morph]
self.add([pattern], attrs)
def load_from_morph_rules(
self, morph_rules: Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]]
) -> None:
for tag in morph_rules:
for word in morph_rules[tag]:
pattern = [{"ORTH": word, "TAG": tag}]
attrs = morph_rules[tag][word]
attrs, morph_attrs = _split_morph_attrs(attrs)
morph = self.vocab.morphology.add(morph_attrs)
attrs["MORPH"] = self.vocab.strings[morph]
self.add([pattern], attrs)
def add(
self, patterns: Iterable[MatcherPatternType], attrs: Dict, index: int = 0
) -> None:
"""Add Matcher patterns for tokens that should be modified with the
provided attributes. The token at the specified index within the
matched span will be assigned the attributes.
patterns (Iterable[List[Dict]]): A list of Matcher patterns.
attrs (Dict): The attributes to assign to the target token in the
matched span.
index (int): The index of the token in the matched span to modify. May
be negative to index from the end of the span. Defaults to 0.
DOCS: https://spacy.io/api/attributeruler#add
"""
self.matcher.add(len(self.attrs), patterns)
self._attrs_unnormed.append(attrs)
attrs = normalize_token_attrs(self.vocab, attrs)
self.attrs.append(attrs)
self.indices.append(index)
def add_patterns(self, pattern_dicts: Iterable[AttributeRulerPatternType]) -> None:
for p in pattern_dicts:
self.add(**p)
@property
def patterns(self) -> List[AttributeRulerPatternType]:
all_patterns = []
for i in range(len(self.attrs)):
p = {}
p["patterns"] = self.matcher.get(i)[1]
p["attrs"] = self._attrs_unnormed[i]
p["index"] = self.indices[i]
all_patterns.append(p)
return all_patterns
def to_bytes(self, exclude: Iterable[str] = tuple()) -> bytes:
"""Serialize the attributeruler to a bytestring.
exclude (Iterable[str]): String names of serialization fields to exclude.
RETURNS (bytes): The serialized object.
DOCS: https://spacy.io/api/attributeruler#to_bytes
"""
serialize = {}
serialize["vocab"] = self.vocab.to_bytes
patterns = {k: self.matcher.get(k)[1] for k in range(len(self.attrs))}
serialize["patterns"] = lambda: srsly.msgpack_dumps(patterns)
serialize["attrs"] = lambda: srsly.msgpack_dumps(self.attrs)
serialize["indices"] = lambda: srsly.msgpack_dumps(self.indices)
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data: bytes, exclude: Iterable[str] = tuple()):
"""Load the attributeruler from a bytestring.
bytes_data (bytes): The data to load.
exclude (Iterable[str]): String names of serialization fields to exclude.
returns (AttributeRuler): The loaded object.
DOCS: https://spacy.io/api/attributeruler#from_bytes
"""
data = {"patterns": b""}
def load_patterns(b):
data["patterns"] = srsly.msgpack_loads(b)
def load_attrs(b):
self.attrs = srsly.msgpack_loads(b)
def load_indices(b):
self.indices = srsly.msgpack_loads(b)
deserialize = {
"vocab": lambda b: self.vocab.from_bytes(b),
"patterns": load_patterns,
"attrs": load_attrs,
"indices": load_indices,
}
util.from_bytes(bytes_data, deserialize, exclude)
if data["patterns"]:
for key, pattern in data["patterns"].items():
self.matcher.add(key, pattern)
assert len(self.attrs) == len(data["patterns"])
assert len(self.indices) == len(data["patterns"])
return self
def to_disk(self, path: Union[Path, str], exclude: Iterable[str] = tuple()) -> None:
"""Serialize the attributeruler to disk.
path (Union[Path, str]): A path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#to_disk
"""
patterns = {k: self.matcher.get(k)[1] for k in range(len(self.attrs))}
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
"patterns": lambda p: srsly.write_msgpack(p, patterns),
"attrs": lambda p: srsly.write_msgpack(p, self.attrs),
"indices": lambda p: srsly.write_msgpack(p, self.indices),
}
util.to_disk(path, serialize, exclude)
def from_disk(
self, path: Union[Path, str], exclude: Iterable[str] = tuple()
) -> None:
"""Load the attributeruler from disk.
path (Union[Path, str]): A path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#from_disk
"""
data = {"patterns": b""}
def load_patterns(p):
data["patterns"] = srsly.read_msgpack(p)
def load_attrs(p):
self.attrs = srsly.read_msgpack(p)
def load_indices(p):
self.indices = srsly.read_msgpack(p)
deserialize = {
"vocab": lambda p: self.vocab.from_disk(p),
"patterns": load_patterns,
"attrs": load_attrs,
"indices": load_indices,
}
util.from_disk(path, deserialize, exclude)
if data["patterns"]:
for key, pattern in data["patterns"].items():
self.matcher.add(key, pattern)
assert len(self.attrs) == len(data["patterns"])
assert len(self.indices) == len(data["patterns"])
return self
def _split_morph_attrs(attrs):
"""Split entries from a tag map or morph rules dict into to two dicts, one
with the token-level features (POS, LEMMA) and one with the remaining
features, which are presumed to be individual MORPH features."""
other_attrs = {}
morph_attrs = {}
for k, v in attrs.items():
if k in "_" or k in IDS.keys() or k in IDS.values():
other_attrs[k] = v
else:
morph_attrs[k] = v
return other_attrs, morph_attrs