mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-09 00:36:42 +03:00
92 lines
3.4 KiB
Plaintext
92 lines
3.4 KiB
Plaintext
|
//- 💫 DOCS > USAGE > DEEP LEARNING > PYTORCH
|
||
|
|
||
|
+infobox
|
||
|
+infobox-logos(["pytorch", 100, 48, "http://pytorch.org"])
|
||
|
| #[strong PyTorch] is a dynamic neural network library, which can be much
|
||
|
| easier to work with for NLP. Outside of Google, there's a general shift
|
||
|
| among NLP researchers to both Pytorch and DyNet. spaCy is the front-end
|
||
|
| of choice for PyTorch's #[code torch.text] extension. You can use PyTorch
|
||
|
| to create spaCy pipeline components, to add annotations to the
|
||
|
| #[code Doc] object.
|
||
|
|
||
|
+under-construction
|
||
|
|
||
|
p
|
||
|
| Here's how a #[code begin_update] function that wraps an arbitrary
|
||
|
| PyTorch model would look:
|
||
|
|
||
|
+code.
|
||
|
class PytorchWrapper(thinc.neural.Model):
|
||
|
def __init__(self, pytorch_model):
|
||
|
self.pytorch_model = pytorch_model
|
||
|
|
||
|
def begin_update(self, x_data, drop=0.):
|
||
|
x_var = Variable(x_data)
|
||
|
# Make prediction
|
||
|
y_var = pytorch_model.forward(x_var)
|
||
|
def backward(dy_data, sgd=None):
|
||
|
dy_var = Variable(dy_data)
|
||
|
dx_var = torch.autograd.backward(x_var, dy_var)
|
||
|
return dx_var
|
||
|
return y_var.data, backward
|
||
|
|
||
|
p
|
||
|
| PyTorch requires data to be wrapped in a container, #[code Variable],
|
||
|
| that tracks the operations performed on the data. This "tape" of
|
||
|
| operations is then used by #[code torch.autograd.backward] to compute the
|
||
|
| gradient with respect to the input. For example, the following code
|
||
|
| constructs a PyTorch Linear layer that takes a vector of shape
|
||
|
| #[code (length, 2)], multiples it by a #[code (2, 2)] matrix of weights,
|
||
|
| adds a #[code (2,)] bias, and returns the resulting #[code (length, 2)]
|
||
|
| vector:
|
||
|
|
||
|
+code("PyTorch Linear").
|
||
|
from torch import autograd
|
||
|
from torch import nn
|
||
|
import torch
|
||
|
import numpy
|
||
|
|
||
|
pt_model = nn.Linear(2, 2)
|
||
|
length = 5
|
||
|
|
||
|
input_data = numpy.ones((5, 2), dtype='f')
|
||
|
input_var = autograd.Variable(torch.Tensor(input_data))
|
||
|
|
||
|
output_var = pt_model(input_var)
|
||
|
output_data = output_var.data.numpy()
|
||
|
|
||
|
p
|
||
|
| Given target values we would like the output data to approximate, we can
|
||
|
| then "learn" values of the parameters within #[code pt_model], to give us
|
||
|
| output that's closer to our target. As a trivial example, let's make the
|
||
|
| linear layer compute the negative inverse of the input:
|
||
|
|
||
|
+code.
|
||
|
def get_target(input_data):
|
||
|
return -(1 / input_data)
|
||
|
|
||
|
p
|
||
|
| To update the PyTorch model, we create an optimizer and give it
|
||
|
| references to the model's parameters. We'll then randomly generate input
|
||
|
| data and get the target result we'd like the function to produce. We then
|
||
|
| compute the #[strong gradient of the error] between the current output
|
||
|
| and the target. Using the most popular definition of "error", this is
|
||
|
| simply the average difference:
|
||
|
|
||
|
+code.
|
||
|
from torch import optim
|
||
|
|
||
|
optimizer = optim.SGD(pt_model.parameters(), lr = 0.01)
|
||
|
for i in range(10):
|
||
|
input_data = numpy.random.uniform(-1., 1., (length, 2))
|
||
|
target = -(1 / input_data)
|
||
|
|
||
|
output_var = pt_model(autograd.Variable(torch.Tensor(input_data)))
|
||
|
output_data = output_var.data.numpy()
|
||
|
|
||
|
d_output_data = (output_data - target) / length
|
||
|
d_output_var = autograd.Variable(torch.Tensor(d_output_data))
|
||
|
|
||
|
d_input_var = torch.autograg.backward(output_var, d_output_var)
|
||
|
optimizer.step()
|