1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-18 13:34:13 +03:00
spaCy/examples/pos_tag.py

90 lines
2.7 KiB
Python
Raw Normal View History

'''Print part-of-speech tagged, true-cased, (very roughly) sentence-separated
text, with each "sentence" on a newline, and spaces between tokens. Supports
multi-processing.
'''
from __future__ import print_function, unicode_literals, division
import io
import bz2
import logging
from toolz import partition
from os import path
import spacy.en
from joblib import Parallel, delayed
import plac
import ujson
def parallelize(func, iterator, n_jobs, extra):
extra = tuple(extra)
return Parallel(n_jobs=n_jobs)(delayed(func)(*(item + extra)) for item in iterator)
def iter_texts_from_json_bz2(loc):
'''
Iterator of unicode strings, one per document (here, a comment).
Expects a a path to a BZ2 file, which should be new-line delimited JSON. The
document text should be in a string field titled 'body'.
This is the data format of the Reddit comments corpus.
'''
with bz2.BZ2File(loc) as file_:
for i, line in enumerate(file_):
yield ujson.loads(line)['body']
def transform_texts(batch_id, input_, out_dir):
out_loc = path.join(out_dir, '%d.txt' % batch_id)
if path.exists(out_loc):
return None
print('Batch', batch_id)
nlp = spacy.en.English(parser=False, entity=False)
with io.open(out_loc, 'w', encoding='utf8') as file_:
for text in input_:
doc = nlp(text)
file_.write(' '.join(represent_word(w) for w in doc if not w.is_space))
file_.write('\n')
def represent_word(word):
text = word.text
# True-case, i.e. try to normalize sentence-initial capitals.
# Only do this if the lower-cased form is more probable.
if text.istitle() \
and is_sent_begin(word) \
2016-03-15 22:04:14 +03:00
and word.prob < word.doc.vocab[text.lower()].prob:
text = text.lower()
return text + '|' + word.tag_
def is_sent_begin(word):
# It'd be nice to have some heuristics like these in the library, for these
# times where we don't care so much about accuracy of SBD, and we don't want
# to parse
if word.i == 0:
return True
elif word.i >= 2 and word.nbor(-1).text in ('.', '!', '?', '...'):
return True
else:
return False
@plac.annotations(
in_loc=("Location of input file"),
out_dir=("Location of input file"),
n_workers=("Number of workers", "option", "n", int),
batch_size=("Batch-size for each process", "option", "b", int)
)
def main(in_loc, out_dir, n_workers=4, batch_size=100000):
if not path.exists(out_dir):
path.join(out_dir)
texts = partition(batch_size, iter_texts(in_loc))
parallelize(transform_texts, enumerate(texts), n_workers, [out_dir])
if __name__ == '__main__':
plac.call(main)