mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 10:14:07 +03:00
62 lines
2.6 KiB
Plaintext
62 lines
2.6 KiB
Plaintext
|
//- 💫 DOCS > USAGE > PROCESSING PIPELINES > ATTRIBUTE HOOKS
|
||
|
|
||
|
p
|
||
|
| Hooks let you customize some of the behaviours of the #[code Doc],
|
||
|
| #[code Span] or #[code Token] objects by adding a component to the
|
||
|
| pipeline. For instance, to customize the
|
||
|
| #[+api("doc#similarity") #[code Doc.similarity]] method, you can add a
|
||
|
| component that sets a custom function to
|
||
|
| #[code doc.user_hooks['similarity']]. The built-in #[code Doc.similarity]
|
||
|
| method will check the #[code user_hooks] dict, and delegate to your
|
||
|
| function if you've set one. Similar results can be achieved by setting
|
||
|
| functions to #[code Doc.user_span_hooks] and #[code Doc.user_token_hooks].
|
||
|
|
||
|
+code("Polymorphic similarity example").
|
||
|
span.similarity(doc)
|
||
|
token.similarity(span)
|
||
|
doc1.similarity(doc2)
|
||
|
|
||
|
p
|
||
|
| By default, this just averages the vectors for each document, and
|
||
|
| computes their cosine. Obviously, spaCy should make it easy for you to
|
||
|
| install your own similarity model. This introduces a tricky design
|
||
|
| challenge. The current solution is to add three more dicts to the
|
||
|
| #[code Doc] object:
|
||
|
|
||
|
+aside("Implementation note")
|
||
|
| The hooks live on the #[code Doc] object because the #[code Span] and
|
||
|
| #[code Token] objects are created lazily, and don't own any data. They
|
||
|
| just proxy to their parent #[code Doc]. This turns out to be convenient
|
||
|
| here — we only have to worry about installing hooks in one place.
|
||
|
|
||
|
+table(["Name", "Description"])
|
||
|
+row
|
||
|
+cell #[code user_hooks]
|
||
|
+cell Customise behaviour of #[code doc.vector], #[code doc.has_vector], #[code doc.vector_norm] or #[code doc.sents]
|
||
|
|
||
|
+row
|
||
|
+cell #[code user_token_hooks]
|
||
|
+cell Customise behaviour of #[code token.similarity], #[code token.vector], #[code token.has_vector], #[code token.vector_norm] or #[code token.conjuncts]
|
||
|
|
||
|
+row
|
||
|
+cell #[code user_span_hooks]
|
||
|
+cell Customise behaviour of #[code span.similarity], #[code span.vector], #[code span.has_vector], #[code span.vector_norm] or #[code span.root]
|
||
|
|
||
|
p
|
||
|
| To sum up, here's an example of hooking in custom #[code .similarity()]
|
||
|
| methods:
|
||
|
|
||
|
+code("Add custom similarity hooks").
|
||
|
class SimilarityModel(object):
|
||
|
def __init__(self, model):
|
||
|
self._model = model
|
||
|
|
||
|
def __call__(self, doc):
|
||
|
doc.user_hooks['similarity'] = self.similarity
|
||
|
doc.user_span_hooks['similarity'] = self.similarity
|
||
|
doc.user_token_hooks['similarity'] = self.similarity
|
||
|
|
||
|
def similarity(self, obj1, obj2):
|
||
|
y = self._model([obj1.vector, obj2.vector])
|
||
|
return float(y[0])
|