spaCy/spacy/tests/regression/test_issue4190.py

47 lines
1.5 KiB
Python
Raw Normal View History

2019-08-28 15:16:34 +03:00
from spacy.lang.en import English
from spacy.tokenizer import Tokenizer
2019-09-11 12:38:22 +03:00
from spacy import util
2019-08-28 15:16:34 +03:00
2019-09-11 12:38:22 +03:00
from ..util import make_tempdir
2019-08-28 15:16:34 +03:00
def test_issue4190():
test_string = "Test c."
# Load default language
nlp_1 = English()
doc_1a = nlp_1(test_string)
2019-09-11 12:38:22 +03:00
result_1a = [token.text for token in doc_1a] # noqa: F841
2019-08-28 15:16:34 +03:00
# Modify tokenizer
customize_tokenizer(nlp_1)
doc_1b = nlp_1(test_string)
result_1b = [token.text for token in doc_1b]
# Save and Reload
with make_tempdir() as model_dir:
nlp_1.to_disk(model_dir)
2019-09-11 12:38:22 +03:00
nlp_2 = util.load_model(model_dir)
2019-08-28 15:16:34 +03:00
# This should be the modified tokenizer
doc_2 = nlp_2(test_string)
result_2 = [token.text for token in doc_2]
assert result_1b == result_2
def customize_tokenizer(nlp):
2019-09-11 12:38:22 +03:00
prefix_re = util.compile_prefix_regex(nlp.Defaults.prefixes)
suffix_re = util.compile_suffix_regex(nlp.Defaults.suffixes)
infix_re = util.compile_infix_regex(nlp.Defaults.infixes)
# Remove all exceptions where a single letter is followed by a period (e.g. 'h.')
2019-08-28 15:16:34 +03:00
exceptions = {
k: v
for k, v in dict(nlp.Defaults.tokenizer_exceptions).items()
if not (len(k) == 2 and k[1] == ".")
}
new_tokenizer = Tokenizer(
nlp.vocab,
exceptions,
prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
token_match=nlp.tokenizer.token_match,
)
nlp.tokenizer = new_tokenizer