spaCy/website/docs/usage/_benchmarks-models.md

45 lines
3.1 KiB
Markdown
Raw Normal View History

2020-09-12 18:05:10 +03:00
import { Help } from 'components/typography'; import Link from 'components/link'
<!-- TODO: update, add project template -->
<figure>
| System | Parser | Tagger | NER | WPS<br />CPU <Help>words per second on CPU, higher is better</Help> | WPS<br/>GPU <Help>words per second on GPU, higher is better</Help> |
| ------------------------------------------------------------------------- | ----------------: | ----------------: | ---: | ------------------------------------------------------------------: | -----------------------------------------------------------------: |
| [`en_core_web_trf`](/models/en#en_core_web_trf) (spaCy v3) | | | | | 6k |
| [`en_core_web_lg`](/models/en#en_core_web_lg) (spaCy v3) | | | | | |
| `en_core_web_lg` (spaCy v2) | 91.9 | 97.2 | 85.9 | 10k | |
| [Stanza](https://stanfordnlp.github.io/stanza/) (StanfordNLP)<sup>1</sup> | _n/a_<sup>2</sup> | _n/a_<sup>2</sup> | 88.8 | 234 | 2k |
| <Link to="https://github.com/flairNLP/flair" hideIcon>Flair</Link> | - | 97.9 | 89.3 | | |
<figcaption class="caption">
**Accuracy and speed on the
[OntoNotes 5.0](https://catalog.ldc.upenn.edu/LDC2013T19) corpus.**<br />**1. **
[Qi et al. (2020)](https://arxiv.org/pdf/2003.07082.pdf). **2. ** _Coming soon_:
Qi et al. don't report parsing and tagging results on OntoNotes. We're working
on training Stanza on this corpus to allow direct comparison.
</figcaption>
</figure>
<figure>
2020-09-13 18:59:38 +03:00
| System | POS | UAS | LAS |
2020-09-12 18:05:10 +03:00
| ------------------------------------------------------------------------------ | ---: | ---: | ---: |
| spaCy RoBERTa (2020) | | | |
| spaCy CNN (2020) | | | |
| [Mrini et al.](https://khalilmrini.github.io/Label_Attention_Layer.pdf) (2019) | 97.3 | 97.4 | 96.3 |
| [Zhou and Zhao](https://www.aclweb.org/anthology/P19-1230/) (2019) | 97.3 | 97.2 | 95.7 |
<figcaption class="caption">
**Accuracy on the Penn Treebank.** See
[NLP-progress](http://nlpprogress.com/english/dependency_parsing.html) for more
results.
</figcaption>
</figure>