spaCy/spacy/__main__.py

138 lines
5.6 KiB
Python
Raw Normal View History

# coding: utf8
2017-03-18 20:14:03 +03:00
from __future__ import print_function
# NB! This breaks in plac on Python 2!!
2017-03-23 13:08:30 +03:00
#from __future__ import unicode_literals
import plac
from spacy.cli import download as cli_download
from spacy.cli import link as cli_link
from spacy.cli import info as cli_info
from spacy.cli import package as cli_package
2017-03-23 13:08:41 +03:00
from spacy.cli import train as cli_train
2017-03-26 21:51:40 +03:00
from spacy.cli import model as cli_model
2017-04-07 14:04:17 +03:00
from spacy.cli import convert as cli_convert
class CLI(object):
"""
Command-line interface for spaCy
"""
2017-04-07 14:04:17 +03:00
commands = ('download', 'link', 'info', 'package', 'train', 'model', 'convert')
@plac.annotations(
model=("model to download (shortcut or model name)", "positional", None, str),
direct=("force direct download. Needs model name with version and won't "
"perform compatibility check", "flag", "d", bool)
)
2017-05-08 00:22:21 +03:00
def download(self, model, direct=False):
"""
Download compatible model from default download path using pip. Model
can be shortcut, model name or, if --direct flag is set, full model name
with version.
"""
cli_download(model, direct)
@plac.annotations(
origin=("package name or local path to model", "positional", None, str),
2017-03-21 04:05:14 +03:00
link_name=("name of shortuct link to create", "positional", None, str),
force=("force overwriting of existing link", "flag", "f", bool)
)
def link(self, origin, link_name, force=False):
"""
Create a symlink for models within the spacy/data directory. Accepts
either the name of a pip package, or the local path to the model data
directory. Linking models allows loading them via spacy.load(link_name).
"""
cli_link(origin, link_name, force)
@plac.annotations(
model=("optional: shortcut link of model", "positional", None, str),
markdown=("generate Markdown for GitHub issues", "flag", "md", str)
)
def info(self, model=None, markdown=False):
"""
Print info about spaCy installation. If a model shortcut link is
speficied as an argument, print model information. Flag --markdown
prints details in Markdown for easy copy-pasting to GitHub issues.
"""
cli_info(model, markdown)
@plac.annotations(
input_dir=("directory with model data", "positional", None, str),
2017-03-23 13:08:41 +03:00
output_dir=("output parent directory", "positional", None, str),
meta=("path to meta.json", "option", "m", str),
2017-03-21 13:19:21 +03:00
force=("force overwriting of existing folder in output directory", "flag", "f", bool)
)
def package(self, input_dir, output_dir, meta=None, force=False):
"""
Generate Python package for model data, including meta and required
installation files. A new directory will be created in the specified
2017-03-21 00:50:55 +03:00
output directory, and model data will be copied over.
"""
cli_package(input_dir, output_dir, meta, force)
2017-03-23 13:08:41 +03:00
@plac.annotations(
2017-03-26 16:33:48 +03:00
lang=("model language", "positional", None, str),
output_dir=("output directory to store model in", "positional", None, str),
train_data=("location of JSON-formatted training data", "positional", None, str),
dev_data=("location of JSON-formatted development data (optional)", "positional", None, str),
2017-03-26 15:16:52 +03:00
n_iter=("number of iterations", "option", "n", int),
nsents=("number of sentences", "option", None, int),
2017-03-26 15:24:07 +03:00
parser_L1=("L1 regularization penalty for parser", "option", "L", float),
2017-05-18 12:21:49 +03:00
use_gpu=("Use GPU", "flag", "g", bool),
2017-03-26 15:16:52 +03:00
no_tagger=("Don't train tagger", "flag", "T", bool),
no_parser=("Don't train parser", "flag", "P", bool),
no_ner=("Don't train NER", "flag", "N", bool)
2017-03-23 13:08:41 +03:00
)
2017-03-26 16:33:48 +03:00
def train(self, lang, output_dir, train_data, dev_data=None, n_iter=15,
2017-05-18 12:21:49 +03:00
nsents=0, parser_L1=0.0, use_gpu=False,
no_tagger=False, no_parser=False, no_ner=False):
2017-03-26 16:33:48 +03:00
"""
Train a model. Expects data in spaCy's JSON format.
"""
nsents = nsents or None
2017-05-18 12:21:49 +03:00
cli_train(lang, output_dir, train_data, dev_data, n_iter, nsents,
use_gpu, not no_tagger, not no_parser, not no_ner, parser_L1)
2017-03-23 13:08:41 +03:00
2017-03-26 21:51:40 +03:00
@plac.annotations(
lang=("model language", "positional", None, str),
model_dir=("output directory to store model in", "positional", None, str),
freqs_data=("tab-separated frequencies file", "positional", None, str),
clusters_data=("Brown clusters file", "positional", None, str),
vectors_data=("word vectors file", "positional", None, str)
)
def model(self, lang, model_dir, freqs_data, clusters_data=None, vectors_data=None):
"""
Initialize a new model and its data directory.
"""
cli_model(lang, model_dir, freqs_data, clusters_data, vectors_data)
2017-04-07 14:04:17 +03:00
@plac.annotations(
input_file=("input file", "positional", None, str),
output_dir=("output directory for converted file", "positional", None, str),
n_sents=("Number of sentences per doc", "option", "n", float),
morphology=("Enable appending morphology to tags", "flag", "m", bool)
)
def convert(self, input_file, output_dir, n_sents=10, morphology=False):
"""
Convert files into JSON format for use with train command and other
experiment management functions.
"""
cli_convert(input_file, output_dir, n_sents, morphology)
2017-03-23 13:08:41 +03:00
def __missing__(self, name):
print("\n Command %r does not exist."
"\n Use the --help flag for a list of available commands.\n" % name)
if __name__ == '__main__':
import plac
import sys
sys.argv[0] = 'spacy'
plac.Interpreter.call(CLI)