spaCy/spacy/tests/pipeline/test_entity_linker.py

319 lines
12 KiB
Python
Raw Normal View History

import pytest
from spacy.kb import KnowledgeBase
from spacy import util
2019-03-22 01:17:25 +03:00
from spacy.lang.en import English
from spacy.pipeline import EntityRuler
from spacy.tests.util import make_tempdir
from spacy.tokens import Span
2019-03-22 01:17:25 +03:00
@pytest.fixture
def nlp():
return English()
2019-07-17 18:18:26 +03:00
def assert_almost_equal(a, b):
delta = 0.0001
assert a - delta <= b <= a + delta
2019-03-22 01:17:25 +03:00
def test_kb_valid_entities(nlp):
"""Test the valid construction of a KB with 3 entities and two aliases"""
2019-07-17 13:17:02 +03:00
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
# adding aliases
2019-07-17 13:17:02 +03:00
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the corresponding KB
2019-07-17 13:17:02 +03:00
assert mykb.get_size_entities() == 3
assert mykb.get_size_aliases() == 2
# test retrieval of the entity vectors
assert mykb.get_vector("Q1") == [8, 4, 3]
assert mykb.get_vector("Q2") == [2, 1, 0]
assert mykb.get_vector("Q3") == [-1, -6, 5]
2019-07-17 18:18:26 +03:00
# test retrieval of prior probabilities
assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
2019-07-22 14:39:32 +03:00
assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
2019-07-17 18:18:26 +03:00
2019-03-22 01:17:25 +03:00
def test_kb_invalid_entities(nlp):
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because one of the given IDs is not valid
with pytest.raises(ValueError):
2019-07-17 13:17:02 +03:00
mykb.add_alias(
alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
)
2019-03-22 01:17:25 +03:00
def test_kb_invalid_probabilities(nlp):
"""Test the invalid construction of a KB with wrong prior probabilities"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because the sum of the probabilities exceeds 1
with pytest.raises(ValueError):
2019-07-17 13:17:02 +03:00
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
2019-03-22 01:17:25 +03:00
def test_kb_invalid_combination(nlp):
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
with pytest.raises(ValueError):
2019-07-17 13:17:02 +03:00
mykb.add_alias(
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
)
def test_kb_invalid_entity_vector(nlp):
"""Test the invalid construction of a KB with non-matching entity vector lengths"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
# this should fail because the kb's expected entity vector length is 3
with pytest.raises(ValueError):
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
2019-03-22 01:17:25 +03:00
def test_candidate_generation(nlp):
"""Test correct candidate generation"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
2019-07-17 18:18:26 +03:00
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
2019-07-17 13:17:02 +03:00
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the relevant candidates
2019-07-17 13:17:02 +03:00
assert len(mykb.get_candidates("douglas")) == 2
assert len(mykb.get_candidates("adam")) == 1
assert len(mykb.get_candidates("shrubbery")) == 0
2019-07-17 18:18:26 +03:00
# test the content of the candidates
assert mykb.get_candidates("adam")[0].entity_ == "Q2"
assert mykb.get_candidates("adam")[0].alias_ == "adam"
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12)
2019-07-17 18:18:26 +03:00
assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9)
def test_append_alias(nlp):
"""Test that we can append additional alias-entity pairs"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# test the size of the relevant candidates
assert len(mykb.get_candidates("douglas")) == 2
# append an alias
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
# test the size of the relevant candidates has been incremented
assert len(mykb.get_candidates("douglas")) == 3
# append the same alias-entity pair again should not work (will throw a warning)
2019-10-24 17:16:27 +03:00
with pytest.warns(UserWarning):
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
# test the size of the relevant candidates remained unchanged
assert len(mykb.get_candidates("douglas")) == 3
def test_append_invalid_alias(nlp):
"""Test that append an alias will throw an error if prior probs are exceeding 1"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
# adding aliases
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
# append an alias - should fail because the entities and probabilities vectors are not of equal length
with pytest.raises(ValueError):
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
def test_preserving_links_asdoc(nlp):
"""Test that Span.as_doc preserves the existing entity links"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
# adding entities
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
# adding aliases
2019-07-17 13:17:02 +03:00
mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
# set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
sentencizer = nlp.create_pipe("sentencizer")
nlp.add_pipe(sentencizer)
ruler = EntityRuler(nlp)
2019-07-17 13:17:02 +03:00
patterns = [
{"label": "GPE", "pattern": "Boston"},
{"label": "GPE", "pattern": "Denver"},
]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
cfg = {"kb": mykb, "incl_prior": False}
el_pipe = nlp.create_pipe(name="entity_linker", config=cfg)
el_pipe.begin_training()
CLI scripts for entity linking (wikipedia & generic) (#4091) * document token ent_kb_id * document span kb_id * update pipeline documentation * prior and context weights as bool's instead * entitylinker api documentation * drop for both models * finish entitylinker documentation * small fixes * documentation for KB * candidate documentation * links to api pages in code * small fix * frequency examples as counts for consistency * consistent documentation about tensors returned by predict * add entity linking to usage 101 * add entity linking infobox and KB section to 101 * entity-linking in linguistic features * small typo corrections * training example and docs for entity_linker * predefined nlp and kb * revert back to similarity encodings for simplicity (for now) * set prior probabilities to 0 when excluded * code clean up * bugfix: deleting kb ID from tokens when entities were removed * refactor train el example to use either model or vocab * pretrain_kb example for example kb generation * add to training docs for KB + EL example scripts * small fixes * error numbering * ensure the language of vocab and nlp stay consistent across serialization * equality with = * avoid conflict in errors file * add error 151 * final adjustements to the train scripts - consistency * update of goldparse documentation * small corrections * push commit * turn kb_creator into CLI script (wip) * proper parameters for training entity vectors * wikidata pipeline split up into two executable scripts * remove context_width * move wikidata scripts in bin directory, remove old dummy script * refine KB script with logs and preprocessing options * small edits * small improvements to logging of EL CLI script
2019-08-13 16:38:59 +03:00
el_pipe.incl_context = False
el_pipe.incl_prior = True
nlp.add_pipe(el_pipe, last=True)
# test whether the entity links are preserved by the `as_doc()` function
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
for ent in doc.ents:
orig_text = ent.text
orig_kb_id = ent.kb_id_
sent_doc = ent.sent.as_doc()
for s_ent in sent_doc.ents:
if s_ent.text == orig_text:
assert s_ent.kb_id_ == orig_kb_id
def test_preserving_links_ents(nlp):
"""Test that doc.ents preserves KB annotations"""
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
assert len(list(doc.ents)) == 0
boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
doc.ents = [boston_ent]
assert len(list(doc.ents)) == 1
assert list(doc.ents)[0].label_ == "LOC"
assert list(doc.ents)[0].kb_id_ == "Q1"
def test_preserving_links_ents_2(nlp):
"""Test that doc.ents preserves KB annotations"""
text = "She lives in Boston. He lives in Denver."
doc = nlp(text)
assert len(list(doc.ents)) == 0
loc = doc.vocab.strings.add("LOC")
q1 = doc.vocab.strings.add("Q1")
doc.ents = [(loc, q1, 3, 4)]
assert len(list(doc.ents)) == 1
assert list(doc.ents)[0].label_ == "LOC"
assert list(doc.ents)[0].kb_id_ == "Q1"
# fmt: off
TRAIN_DATA = [
("Russ Cochran captured his first major title with his son as caddie.", {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}}),
("Russ Cochran his reprints include EC Comics.", {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}}),
("Russ Cochran has been publishing comic art.", {"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}}}),
("Russ Cochran was a member of University of Kentucky's golf team.", {"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}}}),
]
GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
# fmt: on
def test_overfitting_IO():
# Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
nlp = English()
nlp.add_pipe(nlp.create_pipe('sentencizer'))
# Add a custom component to recognize "Russ Cochran" as an entity for the example training data
ruler = EntityRuler(nlp)
patterns = [{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
# Convert the texts to docs to make sure we have doc.ents set for the training examples
TRAIN_DOCS = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
annotation_clean = annotation
TRAIN_DOCS.append((doc, annotation_clean))
# create artificial KB - assign same prior weight to the two russ cochran's
# Q2146908 (Russ Cochran): American golfer
# Q7381115 (Russ Cochran): publisher
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(alias="Russ Cochran", entities=["Q2146908", "Q7381115"], probabilities=[0.5, 0.5])
# Create the Entity Linker component and add it to the pipeline
entity_linker = nlp.create_pipe("entity_linker", config={"kb": mykb})
nlp.add_pipe(entity_linker, last=True)
# train the NEL pipe
optimizer = nlp.begin_training()
for i in range(50):
losses = {}
nlp.update(TRAIN_DOCS, sgd=optimizer, losses=losses)
assert losses["entity_linker"] < 0.001
# test the trained model
predictions = []
for text, annotation in TRAIN_DATA:
doc = nlp(text)
for ent in doc.ents:
predictions.append(ent.kb_id_)
assert predictions == GOLD_entities
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
predictions = []
for text, annotation in TRAIN_DATA:
doc2 = nlp2(text)
for ent in doc2.ents:
predictions.append(ent.kb_id_)
assert predictions == GOLD_entities