spaCy/spacy/lang.pyx

229 lines
8.5 KiB
Cython
Raw Normal View History

# cython: profile=True
# cython: embedsignature=True
"""Common classes and utilities across languages.
Provides the main implementation for the spacy tokenizer. Specific languages
subclass the Language class, over-writing the tokenization rules as necessary.
Special-case tokenization rules are read from data/<lang>/tokenization .
"""
from __future__ import unicode_literals
from libc.stdlib cimport calloc, free
import json
import random
from os import path
2014-08-28 21:45:09 +04:00
from .util import read_lang_data
2014-09-10 20:11:13 +04:00
from spacy.tokens import Tokens
from spacy.lexeme cimport LexemeC, lexeme_init
from murmurhash.mrmr cimport hash64
2014-08-28 21:45:09 +04:00
cdef class Language:
2014-08-28 21:45:09 +04:00
"""Base class for language-specific tokenizers.
Most subclasses will override the _split or _split_one methods, which take
a string of non-whitespace characters and output a list of strings. This
function is called by _tokenize, which sits behind a cache and turns the
list of strings into Lexeme objects via the Lexicon. Most languages will not
need to override _tokenize or tokenize.
The language is supplied a list of boolean functions, used to compute flag
features. These are passed to the language's Lexicon object.
The language's name is used to look up default data-files, found in data/<name.
"""
2014-08-30 21:01:15 +04:00
def __cinit__(self, name, string_features, flag_features):
2014-08-28 21:45:09 +04:00
if flag_features is None:
flag_features = []
if string_features is None:
string_features = []
self.name = name
self.cache = {}
2014-08-28 21:45:09 +04:00
lang_data = read_lang_data(name)
rules, words, probs, clusters, case_stats, tag_stats = lang_data
self.lexicon = Lexicon(words, probs, clusters, case_stats, tag_stats,
string_features, flag_features)
2014-08-29 03:59:23 +04:00
self._load_special_tokenization(rules)
2014-09-10 20:27:44 +04:00
self.tokens_class = Tokens
2014-09-10 20:11:13 +04:00
property nr_types:
def __get__(self):
"""Return the number of lexical types in the vocabulary"""
return self.lexicon.size
cpdef Lexeme lookup(self, unicode string):
"""Retrieve (or create, if not found) a Lexeme for a string, and return it.
Args:
string (unicode): The string to be looked up. Must be unicode, not bytes.
Returns:
lexeme (Lexeme): A reference to a lexical type.
"""
return self.lexicon.lookup(string)
2014-09-11 23:37:32 +04:00
cpdef Tokens tokenize(self, unicode string):
"""Tokenize a string.
The tokenization rules are defined in two places:
* The data/<lang>/tokenization table, which handles special cases like contractions;
* The appropriate :py:meth:`find_split` function, which is used to split
off punctuation etc.
Args:
string (unicode): The string to be tokenized.
Returns:
tokens (Tokens): A Tokens object, giving access to a sequence of LexIDs.
"""
cdef size_t length = len(string)
2014-09-11 23:37:32 +04:00
cdef Tokens tokens = self.tokens_class(length)
if length == 0:
2014-09-11 23:37:32 +04:00
return tokens
2014-08-18 21:59:59 +04:00
cdef size_t start = 0
cdef size_t i = 0
cdef Py_UNICODE* characters = string
cdef Py_UNICODE c
for i in range(length):
c = characters[i]
if c == ' ' or c == '\n' or c == '\t':
2014-08-18 21:59:59 +04:00
if start < i:
self._tokenize(tokens, &characters[start], i - start)
2014-08-18 21:59:59 +04:00
start = i + 1
i += 1
2014-08-18 21:59:59 +04:00
if start < i:
self._tokenize(tokens, &characters[start], i - start)
2014-09-11 23:37:32 +04:00
return tokens
cdef _tokenize(self, Tokens tokens, Py_UNICODE* characters, size_t length):
cdef uint64_t hashed = hash64(characters, length * sizeof(Py_UNICODE), 0)
cdef unicode string
cdef LexemeC** lexemes
cdef bint free_chunk = False
cdef size_t i = 0
if hashed in self.cache:
lexemes = <LexemeC**><size_t>self.cache[hashed]
while lexemes[i] != NULL:
tokens.push_back(lexemes[i])
i += 1
2014-09-10 20:11:13 +04:00
else:
string = characters[:length]
2014-09-10 20:11:13 +04:00
substrings = self._split(string)
lexemes = <LexemeC**>calloc(len(substrings) + 1, sizeof(LexemeC*))
2014-09-10 20:11:13 +04:00
for i, substring in enumerate(substrings):
lexemes[i] = <LexemeC*>self.lexicon.get(substring)
tokens.push_back(lexemes[i])
lexemes[i + 1] = NULL
# The intuition here is that if an element belongs in the cache, it
# has several chances to get in. And if the cache is large, we less
# believe that the element belongs there.
if not self.cache or random.random() < (100000.0 / len(self.cache)):
self.cache[hashed] = <size_t>lexemes
else:
free(lexemes)
2014-08-29 03:59:23 +04:00
cdef list _split(self, unicode string):
"""Find how to split a contiguous span of non-space characters into substrings.
This method calls find_split repeatedly. Most languages will want to
override _split_one, but it may be useful to override this instead.
Args:
chunk (unicode): The string to be split, e.g. u"Mike's!"
Returns:
substrings (list): The component substrings, e.g. [u"Mike", "'s", "!"].
"""
substrings = []
while string:
split = self._split_one(string)
if split == 0:
substrings.append(string)
break
substrings.append(string[:split])
string = string[split:]
return substrings
2014-08-29 03:59:23 +04:00
cdef int _split_one(self, unicode word):
return len(word)
2014-08-16 05:22:03 +04:00
2014-08-29 03:59:23 +04:00
def _load_special_tokenization(self, token_rules):
'''Load special-case tokenization rules.
Loads special-case tokenization rules into the Language.cache cache,
read from data/<lang>/tokenization . The special cases are loaded before
any language data is tokenized, giving these priority. For instance,
the English tokenization rules map "ain't" to ["are", "not"].
Args:
token_rules (list): A list of (chunk, tokens) pairs, where chunk is
a string and tokens is a list of strings.
'''
cdef LexemeC** lexemes
cdef uint64_t hashed
for string, substrings in token_rules:
lexemes = <LexemeC**>calloc(len(substrings) + 1, sizeof(LexemeC*))
for i, substring in enumerate(substrings):
lexemes[i] = <LexemeC*>self.lexicon.get(substring)
lexemes[i + 1] = NULL
hashed = hash64(<Py_UNICODE*>string, len(string) * sizeof(Py_UNICODE), 0)
self.cache[hashed] = <size_t>lexemes
2014-08-18 21:59:59 +04:00
cdef class Lexicon:
2014-08-28 21:45:09 +04:00
def __cinit__(self, words, probs, clusters, case_stats, tag_stats,
string_features, flag_features):
2014-08-29 03:59:23 +04:00
self._flag_features = flag_features
self._string_features = string_features
2014-08-28 21:45:09 +04:00
self._dict = {}
2014-09-10 20:11:13 +04:00
self.size = 0
2014-08-28 21:45:09 +04:00
cdef Lexeme word
for string in words:
prob = probs.get(string, 0.0)
cluster = clusters.get(string, 0.0)
cases = case_stats.get(string, {})
tags = tag_stats.get(string, {})
views = [string_view(string, prob, cluster, cases, tags)
for string_view in self._string_features]
flags = set()
for i, flag_feature in enumerate(self._flag_features):
if flag_feature(string, prob, cluster, cases, tags):
flags.add(i)
lexeme = lexeme_init(string, prob, cluster, views, flags)
self._dict[string] = <size_t>lexeme
2014-09-10 20:11:13 +04:00
self.size += 1
cdef size_t get(self, unicode string):
cdef LexemeC* lexeme
assert len(string) != 0
2014-08-28 21:45:09 +04:00
if string in self._dict:
return self._dict[string]
views = [string_view(string, 0.0, 0, {}, {})
for string_view in self._string_features]
flags = set()
for i, flag_feature in enumerate(self._flag_features):
if flag_feature(string, 0.0, {}, {}):
flags.add(i)
lexeme = lexeme_init(string, 0, 0, views, flags)
self._dict[string] = <size_t>lexeme
2014-09-10 20:11:13 +04:00
self.size += 1
return <size_t>lexeme
cpdef Lexeme lookup(self, unicode string):
"""Retrieve (or create, if not found) a Lexeme for a string, and return it.
Args
string (unicode): The string to be looked up. Must be unicode, not bytes.
Returns:
lexeme (Lexeme): A reference to a lexical type.
"""
cdef size_t lexeme = self.get(string)
return Lexeme(lexeme)