mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-01 04:46:38 +03:00
353 lines
13 KiB
Cython
353 lines
13 KiB
Cython
|
# cython: infer_types=True
|
||
|
# cython: cdivision=True
|
||
|
# cython: boundscheck=False
|
||
|
# coding: utf-8
|
||
|
from __future__ import unicode_literals, print_function
|
||
|
|
||
|
from collections import OrderedDict
|
||
|
import ujson
|
||
|
import json
|
||
|
import numpy
|
||
|
cimport cython.parallel
|
||
|
import cytoolz
|
||
|
import numpy.random
|
||
|
cimport numpy as np
|
||
|
from libc.math cimport exp
|
||
|
from libcpp.vector cimport vector
|
||
|
from libc.string cimport memset, memcpy
|
||
|
from libc.stdlib cimport calloc, free, realloc
|
||
|
from cymem.cymem cimport Pool
|
||
|
from thinc.typedefs cimport weight_t, class_t, hash_t
|
||
|
from thinc.extra.search cimport Beam
|
||
|
from thinc.api import chain, clone
|
||
|
from thinc.v2v import Model, Maxout, Affine
|
||
|
from thinc.misc import LayerNorm
|
||
|
from thinc.neural.ops import CupyOps
|
||
|
from thinc.neural.util import get_array_module
|
||
|
from thinc.linalg cimport Vec, VecVec
|
||
|
from thinc cimport openblas
|
||
|
|
||
|
|
||
|
from .._ml import zero_init, PrecomputableAffine, Tok2Vec, flatten
|
||
|
from .._ml import link_vectors_to_models, create_default_optimizer
|
||
|
from ..compat import json_dumps, copy_array
|
||
|
from ..tokens.doc cimport Doc
|
||
|
from ..gold cimport GoldParse
|
||
|
from ..errors import Errors, TempErrors
|
||
|
from .. import util
|
||
|
from .stateclass cimport StateClass
|
||
|
from .transition_system cimport Transition
|
||
|
from . import _beam_utils, nonproj
|
||
|
|
||
|
|
||
|
cdef WeightsC get_c_weights(model):
|
||
|
cdef WeightsC output
|
||
|
return output
|
||
|
|
||
|
cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
||
|
if n.states < A._max_size:
|
||
|
A._curr_size = n.states
|
||
|
return
|
||
|
if A._max_size == 0:
|
||
|
A.token_ids = <int*>calloc(n.states * n.feats, sizeof(A.token_ids[0]))
|
||
|
A.vectors = <float*>calloc(n.states * n.hiddens, sizeof(A.hiddens[0]))
|
||
|
A.scores = <float*>calloc(n.states * n.classes, sizeof(A.scores[0]))
|
||
|
A.unmaxed = <float*>calloc(n.states * n.hiddens, sizeof(A.unmaxed[0]))
|
||
|
A.is_valid = <int*>calloc(n.states * n.classes, sizeof(A.is_valid[0]))
|
||
|
else:
|
||
|
A.token_ids = <int*>realloc(A.token_ids, n.states * n.feats * sizeof(A.token_ids[0]))
|
||
|
A.vectors = <float*>realloc(A.token_ids, n.states * n.embed_width * sizeof(A.vectors[0]))
|
||
|
A.scores = <float*>realloc(A.scores, n.states * n.classes * sizeof(A.scores[0]))
|
||
|
A.unmaxed = <float*>realloc(A.unmaxed, n.states * n.hiddens * sizeof(A.unmaxed[0]))
|
||
|
A.is_valid = <int*>realloc(A.is_valid, n.states * n.classes * sizeof(A.is_valid[0]))
|
||
|
A._max_size = n.states
|
||
|
A._curr_size = n.states
|
||
|
|
||
|
|
||
|
cdef void predict_states(ActivationsC* A, StateC** states,
|
||
|
const WeightsC* W, SizesC n) nogil:
|
||
|
resize_activations(A, n)
|
||
|
for i in range(n.states):
|
||
|
state = states[i]
|
||
|
state.set_context_tokens(A.token_ids, n.feats)
|
||
|
memset(A.unmaxed, 0, n.hiddens * n.pieces * sizeof(float))
|
||
|
sum_state_features(A.unmaxed,
|
||
|
W.feat_weights, A.token_ids, 1, n.feats, n.hiddens * n.pieces)
|
||
|
VecVec.add_i(A.unmaxed,
|
||
|
W.feat_bias, 1., n.hiddens * n.pieces)
|
||
|
state_vector = &A.vectors[i*n.hiddens]
|
||
|
for j in range(n.hiddens):
|
||
|
index = j * n.pieces
|
||
|
which = Vec.arg_max(&A.unmaxed[index], n.pieces)
|
||
|
state_vector[j] = A.unmaxed[index + which]
|
||
|
# Compute hidden-to-output
|
||
|
openblas.simple_gemm(A.scores, n.states, n.classes,
|
||
|
A.vectors, n.states, n.hiddens,
|
||
|
W.hidden_weights, n.hiddens, n.classes, 0, 0)
|
||
|
# Add bias
|
||
|
for i in range(n.states):
|
||
|
VecVec.add_i(&A.scores[i*n.classes],
|
||
|
W.hidden_bias, 1., n.classes)
|
||
|
|
||
|
|
||
|
cdef void sum_state_features(float* output,
|
||
|
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||
|
cdef int idx, b, f, i
|
||
|
cdef const float* feature
|
||
|
padding = cached
|
||
|
cached += F * O
|
||
|
cdef int id_stride = F*O
|
||
|
cdef float one = 1.
|
||
|
for b in range(B):
|
||
|
for f in range(F):
|
||
|
if token_ids[f] < 0:
|
||
|
feature = &padding[f*O]
|
||
|
else:
|
||
|
idx = token_ids[f] * id_stride + f*O
|
||
|
feature = &cached[idx]
|
||
|
openblas.simple_axpy(&output[b*O], O,
|
||
|
feature, one)
|
||
|
token_ids += F
|
||
|
|
||
|
|
||
|
cdef void cpu_log_loss(float* d_scores,
|
||
|
const float* costs, const int* is_valid, const float* scores,
|
||
|
int O) nogil:
|
||
|
"""Do multi-label log loss"""
|
||
|
cdef double max_, gmax, Z, gZ
|
||
|
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||
|
guess = arg_max_if_valid(scores, is_valid, O)
|
||
|
Z = 1e-10
|
||
|
gZ = 1e-10
|
||
|
max_ = scores[guess]
|
||
|
gmax = scores[best]
|
||
|
for i in range(O):
|
||
|
if is_valid[i]:
|
||
|
Z += exp(scores[i] - max_)
|
||
|
if costs[i] <= costs[best]:
|
||
|
gZ += exp(scores[i] - gmax)
|
||
|
for i in range(O):
|
||
|
if not is_valid[i]:
|
||
|
d_scores[i] = 0.
|
||
|
elif costs[i] <= costs[best]:
|
||
|
d_scores[i] = (exp(scores[i]-max_) / Z) - (exp(scores[i]-gmax)/gZ)
|
||
|
else:
|
||
|
d_scores[i] = exp(scores[i]-max_) / Z
|
||
|
|
||
|
|
||
|
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs,
|
||
|
const int* is_valid, int n) nogil:
|
||
|
# Find minimum cost
|
||
|
cdef float cost = 1
|
||
|
for i in range(n):
|
||
|
if is_valid[i] and costs[i] < cost:
|
||
|
cost = costs[i]
|
||
|
# Now find best-scoring with that cost
|
||
|
cdef int best = -1
|
||
|
for i in range(n):
|
||
|
if costs[i] <= cost and is_valid[i]:
|
||
|
if best == -1 or scores[i] > scores[best]:
|
||
|
best = i
|
||
|
return best
|
||
|
|
||
|
|
||
|
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil:
|
||
|
cdef int best = -1
|
||
|
for i in range(n):
|
||
|
if is_valid[i] >= 1:
|
||
|
if best == -1 or scores[i] > scores[best]:
|
||
|
best = i
|
||
|
return best
|
||
|
|
||
|
|
||
|
class ParserModel(Model):
|
||
|
def __init__(self, tok2vec, lower_model, upper_model):
|
||
|
Model.__init__(self)
|
||
|
self._layers = [tok2vec, lower_model, upper_model]
|
||
|
|
||
|
def begin_update(self, docs, drop=0.):
|
||
|
step_model = ParserStepModel(docs, self.layers, drop=drop)
|
||
|
def finish_parser_update(golds, sgd=None):
|
||
|
step_model.make_updates(sgd)
|
||
|
return None
|
||
|
return step_model, finish_parser_update
|
||
|
|
||
|
@property
|
||
|
def tok2vec(self):
|
||
|
return self._layers[0]
|
||
|
|
||
|
@property
|
||
|
def lower(self):
|
||
|
return self._layers[1]
|
||
|
|
||
|
@property
|
||
|
def upper(self):
|
||
|
return self._layers[2]
|
||
|
|
||
|
|
||
|
class ParserStepModel(Model):
|
||
|
def __init__(self, docs, layers, drop=0.):
|
||
|
self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop)
|
||
|
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
|
||
|
drop=drop)
|
||
|
self.vec2scores = layers[-1]
|
||
|
self.cuda_stream = util.get_cuda_stream()
|
||
|
self.backprops = []
|
||
|
|
||
|
def begin_update(self, states, drop=0.):
|
||
|
token_ids = self.get_token_ids(states)
|
||
|
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
|
||
|
vector, bp_dropout = self.ops.dropout(vector, drop)
|
||
|
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
|
||
|
|
||
|
def backprop_parser_step(d_scores, sgd=None):
|
||
|
d_vector = bp_dropout(get_d_vector(d_scores, sgd=sgd))
|
||
|
if isinstance(self.model[0].ops, CupyOps) \
|
||
|
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
||
|
# Move token_ids and d_vector to GPU, asynchronously
|
||
|
self.backprops.append((
|
||
|
util.get_async(self.cuda_stream, token_ids),
|
||
|
util.get_async(self.cuda_stream, d_vector),
|
||
|
get_d_tokvecs
|
||
|
))
|
||
|
else:
|
||
|
self.backprops.append((token_ids, d_vector, get_d_tokvecs))
|
||
|
return None
|
||
|
return scores, backprop_parser_step
|
||
|
|
||
|
def get_token_ids(self, states):
|
||
|
cdef StateClass state
|
||
|
cdef int n_tokens = self.nr_feature
|
||
|
cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
|
||
|
dtype='i', order='C')
|
||
|
c_ids = <int*>ids.data
|
||
|
for i, state in enumerate(states):
|
||
|
if not state.is_final():
|
||
|
state.c.set_context_tokens(c_ids, n_tokens)
|
||
|
c_ids += ids.shape[1]
|
||
|
return ids
|
||
|
|
||
|
def make_updates(self, sgd):
|
||
|
# Tells CUDA to block, so our async copies complete.
|
||
|
if self.cuda_stream is not None:
|
||
|
self.cuda_stream.synchronize()
|
||
|
# Add a padding vector to the d_tokvecs gradient, so that missing
|
||
|
# values don't affect the real gradient.
|
||
|
d_tokvecs = self.ops.allocate((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
|
||
|
for ids, d_vector, bp_vector in self.backprops:
|
||
|
d_state_features = bp_vector((d_vector, ids), sgd=sgd)
|
||
|
ids = ids.flatten()
|
||
|
d_state_features = d_state_features.reshape(
|
||
|
(ids.size, d_state_features.shape[2]))
|
||
|
self.ops.scatter_add(d_tokvecs, ids,
|
||
|
d_state_features)
|
||
|
# Padded -- see update()
|
||
|
self.bp_tokvecs(d_tokvecs[:-1], sgd=sgd)
|
||
|
return d_tokvecs
|
||
|
|
||
|
|
||
|
cdef class precompute_hiddens:
|
||
|
"""Allow a model to be "primed" by pre-computing input features in bulk.
|
||
|
|
||
|
This is used for the parser, where we want to take a batch of documents,
|
||
|
and compute vectors for each (token, position) pair. These vectors can then
|
||
|
be reused, especially for beam-search.
|
||
|
|
||
|
Let's say we're using 12 features for each state, e.g. word at start of
|
||
|
buffer, three words on stack, their children, etc. In the normal arc-eager
|
||
|
system, a document of length N is processed in 2*N states. This means we'll
|
||
|
create 2*N*12 feature vectors --- but if we pre-compute, we only need
|
||
|
N*12 vector computations. The saving for beam-search is much better:
|
||
|
if we have a beam of k, we'll normally make 2*N*12*K computations --
|
||
|
so we can save the factor k. This also gives a nice CPU/GPU division:
|
||
|
we can do all our hard maths up front, packed into large multiplications,
|
||
|
and do the hard-to-program parsing on the CPU.
|
||
|
"""
|
||
|
cdef int nF, nO, nP
|
||
|
cdef bint _is_synchronized
|
||
|
cdef public object ops
|
||
|
cdef np.ndarray _features
|
||
|
cdef np.ndarray _cached
|
||
|
cdef np.ndarray bias
|
||
|
cdef object _cuda_stream
|
||
|
cdef object _bp_hiddens
|
||
|
|
||
|
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
|
||
|
drop=0.):
|
||
|
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
|
||
|
cdef np.ndarray cached
|
||
|
if not isinstance(gpu_cached, numpy.ndarray):
|
||
|
# Note the passing of cuda_stream here: it lets
|
||
|
# cupy make the copy asynchronously.
|
||
|
# We then have to block before first use.
|
||
|
cached = gpu_cached.get(stream=cuda_stream)
|
||
|
else:
|
||
|
cached = gpu_cached
|
||
|
if not isinstance(lower_model.b, numpy.ndarray):
|
||
|
self.bias = lower_model.b.get()
|
||
|
else:
|
||
|
self.bias = lower_model.b
|
||
|
self.nF = cached.shape[1]
|
||
|
self.nP = getattr(lower_model, 'nP', 1)
|
||
|
self.nO = cached.shape[2]
|
||
|
self.ops = lower_model.ops
|
||
|
self._is_synchronized = False
|
||
|
self._cuda_stream = cuda_stream
|
||
|
self._cached = cached
|
||
|
self._bp_hiddens = bp_features
|
||
|
|
||
|
cdef const float* get_feat_weights(self) except NULL:
|
||
|
if not self._is_synchronized and self._cuda_stream is not None:
|
||
|
self._cuda_stream.synchronize()
|
||
|
self._is_synchronized = True
|
||
|
return <float*>self._cached.data
|
||
|
|
||
|
def __call__(self, X):
|
||
|
return self.begin_update(X)[0]
|
||
|
|
||
|
def begin_update(self, token_ids, drop=0.):
|
||
|
cdef np.ndarray state_vector = numpy.zeros(
|
||
|
(token_ids.shape[0], self.nO, self.nP), dtype='f')
|
||
|
# This is tricky, but (assuming GPU available);
|
||
|
# - Input to forward on CPU
|
||
|
# - Output from forward on CPU
|
||
|
# - Input to backward on GPU!
|
||
|
# - Output from backward on GPU
|
||
|
bp_hiddens = self._bp_hiddens
|
||
|
|
||
|
feat_weights = self.get_feat_weights()
|
||
|
cdef int[:, ::1] ids = token_ids
|
||
|
sum_state_features(<float*>state_vector.data,
|
||
|
feat_weights, &ids[0,0],
|
||
|
token_ids.shape[0], self.nF, self.nO*self.nP)
|
||
|
state_vector += self.bias
|
||
|
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
|
||
|
|
||
|
def backward(d_state_vector_ids, sgd=None):
|
||
|
d_state_vector, token_ids = d_state_vector_ids
|
||
|
d_state_vector = bp_nonlinearity(d_state_vector, sgd)
|
||
|
# This will usually be on GPU
|
||
|
if not isinstance(d_state_vector, self.ops.xp.ndarray):
|
||
|
d_state_vector = self.ops.xp.array(d_state_vector)
|
||
|
d_tokens = bp_hiddens((d_state_vector, token_ids), sgd)
|
||
|
return d_tokens
|
||
|
return state_vector, backward
|
||
|
|
||
|
def _nonlinearity(self, state_vector):
|
||
|
if self.nP == 1:
|
||
|
state_vector = state_vector.reshape(state_vector.shape[:-1])
|
||
|
mask = state_vector >= 0.
|
||
|
state_vector *= mask
|
||
|
else:
|
||
|
state_vector, mask = self.ops.maxout(state_vector)
|
||
|
|
||
|
def backprop_nonlinearity(d_best, sgd=None):
|
||
|
if self.nP == 1:
|
||
|
d_best *= mask
|
||
|
d_best = d_best.reshape((d_best.shape + (1,)))
|
||
|
return d_best
|
||
|
else:
|
||
|
return self.ops.backprop_maxout(d_best, mask, self.nP)
|
||
|
return state_vector, backprop_nonlinearity
|
||
|
|