2017-10-09 01:02:23 +03:00
|
|
|
import pytest
|
|
|
|
from thinc.neural.optimizers import Adam
|
|
|
|
from thinc.neural.ops import NumpyOps
|
2018-07-25 00:38:44 +03:00
|
|
|
from spacy.attrs import NORM
|
|
|
|
from spacy.gold import GoldParse
|
|
|
|
from spacy.vocab import Vocab
|
|
|
|
from spacy.tokens import Doc
|
|
|
|
from spacy.pipeline import DependencyParser
|
2017-10-09 01:02:23 +03:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def vocab():
|
|
|
|
return Vocab(lex_attr_getters={NORM: lambda s: s})
|
|
|
|
|
2018-07-25 00:38:44 +03:00
|
|
|
|
2017-10-09 01:02:23 +03:00
|
|
|
@pytest.fixture
|
|
|
|
def parser(vocab):
|
2017-10-26 13:38:23 +03:00
|
|
|
parser = DependencyParser(vocab)
|
2018-11-27 03:09:36 +03:00
|
|
|
parser.cfg["token_vector_width"] = 4
|
|
|
|
parser.cfg["hidden_width"] = 32
|
|
|
|
# parser.add_label('right')
|
|
|
|
parser.add_label("left")
|
2017-10-09 01:02:23 +03:00
|
|
|
parser.begin_training([], **parser.cfg)
|
|
|
|
sgd = Adam(NumpyOps(), 0.001)
|
|
|
|
|
|
|
|
for i in range(10):
|
|
|
|
losses = {}
|
2018-11-27 03:09:36 +03:00
|
|
|
doc = Doc(vocab, words=["a", "b", "c", "d"])
|
|
|
|
gold = GoldParse(doc, heads=[1, 1, 3, 3], deps=["left", "ROOT", "left", "ROOT"])
|
2019-11-11 19:35:27 +03:00
|
|
|
parser.update((doc, gold), sgd=sgd, losses=losses)
|
2017-10-09 01:02:23 +03:00
|
|
|
return parser
|
|
|
|
|
2018-07-25 00:38:44 +03:00
|
|
|
|
2017-10-09 01:02:23 +03:00
|
|
|
def test_no_sentences(parser):
|
2018-11-27 03:09:36 +03:00
|
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
2017-10-09 01:02:23 +03:00
|
|
|
doc = parser(doc)
|
2017-10-12 22:18:22 +03:00
|
|
|
assert len(list(doc.sents)) >= 1
|
2017-10-09 01:02:23 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_sents_1(parser):
|
2018-11-27 03:09:36 +03:00
|
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
2017-10-09 01:02:23 +03:00
|
|
|
doc[2].sent_start = True
|
|
|
|
doc = parser(doc)
|
2017-10-09 01:29:37 +03:00
|
|
|
assert len(list(doc.sents)) >= 2
|
2018-11-27 03:09:36 +03:00
|
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
2017-10-09 01:02:23 +03:00
|
|
|
doc[1].sent_start = False
|
|
|
|
doc[2].sent_start = True
|
|
|
|
doc[3].sent_start = False
|
|
|
|
doc = parser(doc)
|
|
|
|
assert len(list(doc.sents)) == 2
|
|
|
|
|
|
|
|
|
|
|
|
def test_sents_1_2(parser):
|
2018-11-27 03:09:36 +03:00
|
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
2017-10-09 01:02:23 +03:00
|
|
|
doc[1].sent_start = True
|
|
|
|
doc[2].sent_start = True
|
|
|
|
doc = parser(doc)
|
2017-11-03 16:36:08 +03:00
|
|
|
assert len(list(doc.sents)) >= 3
|
2017-10-09 01:02:23 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_sents_1_3(parser):
|
2018-11-27 03:09:36 +03:00
|
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
2017-10-09 01:02:23 +03:00
|
|
|
doc[1].sent_start = True
|
|
|
|
doc[3].sent_start = True
|
|
|
|
doc = parser(doc)
|
2017-10-11 09:38:34 +03:00
|
|
|
assert len(list(doc.sents)) >= 3
|
2018-11-27 03:09:36 +03:00
|
|
|
doc = Doc(parser.vocab, words=["a", "b", "c", "d"])
|
2017-10-09 01:02:23 +03:00
|
|
|
doc[1].sent_start = True
|
|
|
|
doc[2].sent_start = False
|
|
|
|
doc[3].sent_start = True
|
|
|
|
doc = parser(doc)
|
|
|
|
assert len(list(doc.sents)) == 3
|