spaCy/spacy/lang/ja/__init__.py

292 lines
11 KiB
Python
Raw Normal View History

2017-05-03 07:56:21 +03:00
# encoding: utf8
from __future__ import unicode_literals, print_function
import srsly
from collections import namedtuple, OrderedDict
from .stop_words import STOP_WORDS
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
from .syntax_iterators import SYNTAX_ITERATORS
from .tag_map import TAG_MAP
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
from .tag_orth_map import TAG_ORTH_MAP
from .tag_bigram_map import TAG_BIGRAM_MAP
from ...attrs import LANG
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
from ...compat import copy_reg
from ...errors import Errors
from ...language import Language
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
from ...symbols import POS
from ...tokens import Doc
from ...util import DummyTokenizer
from ... import util
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
# Hold the attributes we need with convenient names
DetailedToken = namedtuple("DetailedToken", ["surface", "tag", "inf", "lemma", "reading", "sub_tokens"])
2019-12-21 21:04:17 +03:00
def try_sudachi_import(split_mode="A"):
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
"""SudachiPy is required for Japanese support, so check for it.
It it's not available blow up and explain how to fix it.
split_mode should be one of these values: "A", "B", "C", None->"A"."""
try:
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
from sudachipy import dictionary, tokenizer
split_mode = {
None: tokenizer.Tokenizer.SplitMode.A,
"A": tokenizer.Tokenizer.SplitMode.A,
"B": tokenizer.Tokenizer.SplitMode.B,
"C": tokenizer.Tokenizer.SplitMode.C,
}[split_mode]
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
tok = dictionary.Dictionary().create(
mode=split_mode
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
)
return tok
except ImportError:
raise ImportError(
"Japanese support requires SudachiPy and SudachiDict-core "
"(https://github.com/WorksApplications/SudachiPy). "
"Install with `pip install sudachipy sudachidict_core` or "
"install spaCy with `pip install spacy[ja]`."
)
def resolve_pos(orth, tag, next_tag):
"""If necessary, add a field to the POS tag for UD mapping.
Under Universal Dependencies, sometimes the same Unidic POS tag can
be mapped differently depending on the literal token or its context
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
in the sentence. This function returns resolved POSs for both token
and next_token by tuple.
"""
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
# Some tokens have their UD tag decided based on the POS of the following
# token.
# apply orth based mapping
if tag in TAG_ORTH_MAP:
orth_map = TAG_ORTH_MAP[tag]
if orth in orth_map:
return orth_map[orth], None # current_pos, next_pos
# apply tag bi-gram mapping
if next_tag:
tag_bigram = tag, next_tag
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
if tag_bigram in TAG_BIGRAM_MAP:
current_pos, next_pos = TAG_BIGRAM_MAP[tag_bigram]
if current_pos is None: # apply tag uni-gram mapping for current_pos
return TAG_MAP[tag][POS], next_pos # only next_pos is identified by tag bi-gram mapping
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
else:
return current_pos, next_pos
# apply tag uni-gram mapping
return TAG_MAP[tag][POS], None
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
2019-12-21 21:04:17 +03:00
def get_dtokens_and_spaces(dtokens, text, gap_tag="空白"):
# Compare the content of tokens and text, first
words = [x.surface for x in dtokens]
if "".join("".join(words).split()) != "".join(text.split()):
raise ValueError(Errors.E194.format(text=text, words=words))
text_dtokens = []
text_spaces = []
text_pos = 0
# handle empty and whitespace-only texts
if len(words) == 0:
return text_dtokens, text_spaces
elif len([word for word in words if not word.isspace()]) == 0:
assert text.isspace()
text_dtokens = [DetailedToken(text, gap_tag, '', text, None, None)]
text_spaces = [False]
return text_dtokens, text_spaces
# align words and dtokens by referring text, and insert gap tokens for the space char spans
for word, dtoken in zip(words, dtokens):
# skip all space tokens
if word.isspace():
continue
try:
word_start = text[text_pos:].index(word)
except ValueError:
raise ValueError(Errors.E194.format(text=text, words=words))
# space token
if word_start > 0:
w = text[text_pos:text_pos + word_start]
text_dtokens.append(DetailedToken(w, gap_tag, '', w, None, None))
text_spaces.append(False)
text_pos += word_start
# content word
text_dtokens.append(dtoken)
text_spaces.append(False)
text_pos += len(word)
# poll a space char after the word
if text_pos < len(text) and text[text_pos] == " ":
text_spaces[-1] = True
text_pos += 1
# trailing space token
if text_pos < len(text):
w = text[text_pos:]
text_dtokens.append(DetailedToken(w, gap_tag, '', w, None, None))
text_spaces.append(False)
return text_dtokens, text_spaces
class JapaneseTokenizer(DummyTokenizer):
def __init__(self, cls, nlp=None, config={}):
2017-10-14 14:11:39 +03:00
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
self.split_mode = config.get("split_mode", None)
self.tokenizer = try_sudachi_import(self.split_mode)
2017-10-14 14:11:39 +03:00
def __call__(self, text):
# convert sudachipy.morpheme.Morpheme to DetailedToken and merge continuous spaces
sudachipy_tokens = self.tokenizer.tokenize(text)
dtokens = self._get_dtokens(sudachipy_tokens)
dtokens, spaces = get_dtokens_and_spaces(dtokens, text)
# create Doc with tag bi-gram based part-of-speech identification rules
words, tags, inflections, lemmas, readings, sub_tokens_list = zip(*dtokens) if dtokens else [[]] * 6
sub_tokens_list = list(sub_tokens_list)
doc = Doc(self.vocab, words=words, spaces=spaces)
next_pos = None # for bi-gram rules
for idx, (token, dtoken) in enumerate(zip(doc, dtokens)):
token.tag_ = dtoken.tag
if next_pos: # already identified in previous iteration
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
token.pos = next_pos
next_pos = None
else:
token.pos, next_pos = resolve_pos(
token.orth_,
dtoken.tag,
tags[idx + 1] if idx + 1 < len(tags) else None
)
# if there's no lemma info (it's an unk) just use the surface
token.lemma_ = dtoken.lemma if dtoken.lemma else dtoken.surface
doc.user_data["inflections"] = inflections
doc.user_data["reading_forms"] = readings
doc.user_data["sub_tokens"] = sub_tokens_list
doc.is_tagged = True
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
return doc
def _get_dtokens(self, sudachipy_tokens, need_sub_tokens=True):
sub_tokens_list = self._get_sub_tokens(sudachipy_tokens) if need_sub_tokens else None
dtokens = [
DetailedToken(
token.surface(), # orth
'-'.join([xx for xx in token.part_of_speech()[:4] if xx != '*']), # tag
','.join([xx for xx in token.part_of_speech()[4:] if xx != '*']), # inf
token.dictionary_form(), # lemma
token.reading_form(), # user_data['reading_forms']
sub_tokens_list[idx] if sub_tokens_list else None, # user_data['sub_tokens']
) for idx, token in enumerate(sudachipy_tokens) if len(token.surface()) > 0
# remove empty tokens which can be produced with characters like … that
]
# Sudachi normalizes internally and outputs each space char as a token.
# This is the preparation for get_dtokens_and_spaces() to merge the continuous space tokens
return [
t for idx, t in enumerate(dtokens) if
idx == 0 or
not t.surface.isspace() or t.tag != '空白' or
not dtokens[idx - 1].surface.isspace() or dtokens[idx - 1].tag != '空白'
]
def _get_sub_tokens(self, sudachipy_tokens):
if self.split_mode is None or self.split_mode == "A": # do nothing for default split mode
return None
sub_tokens_list = [] # list of (list of list of DetailedToken | None)
for token in sudachipy_tokens:
sub_a = token.split(self.tokenizer.SplitMode.A)
if len(sub_a) == 1: # no sub tokens
sub_tokens_list.append(None)
elif self.split_mode == "B":
sub_tokens_list.append([self._get_dtokens(sub_a, False)])
else: # "C"
sub_b = token.split(self.tokenizer.SplitMode.B)
if len(sub_a) == len(sub_b):
dtokens = self._get_dtokens(sub_a, False)
sub_tokens_list.append([dtokens, dtokens])
else:
sub_tokens_list.append([self._get_dtokens(sub_a, False), self._get_dtokens(sub_b, False)])
return sub_tokens_list
def _get_config(self):
config = OrderedDict(
(
("split_mode", self.split_mode),
)
)
return config
def _set_config(self, config={}):
self.split_mode = config.get("split_mode", None)
def to_bytes(self, **kwargs):
serializers = OrderedDict(
(
("cfg", lambda: srsly.json_dumps(self._get_config())),
)
)
return util.to_bytes(serializers, [])
def from_bytes(self, data, **kwargs):
deserializers = OrderedDict(
(
("cfg", lambda b: self._set_config(srsly.json_loads(b))),
)
)
util.from_bytes(data, deserializers, [])
self.tokenizer = try_sudachi_import(self.split_mode)
return self
def to_disk(self, path, **kwargs):
path = util.ensure_path(path)
serializers = OrderedDict(
(
("cfg", lambda p: srsly.write_json(p, self._get_config())),
)
)
return util.to_disk(path, serializers, [])
def from_disk(self, path, **kwargs):
path = util.ensure_path(path)
serializers = OrderedDict(
(
("cfg", lambda p: self._set_config(srsly.read_json(p))),
)
)
util.from_disk(path, serializers, [])
self.tokenizer = try_sudachi_import(self.split_mode)
2017-10-14 14:11:39 +03:00
class JapaneseDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
2019-02-07 22:54:07 +03:00
lex_attr_getters[LANG] = lambda _text: "ja"
stop_words = STOP_WORDS
tag_map = TAG_MAP
Add Japanese Model (#5544) * Add more rules to deal with Japanese UD mappings Japanese UD rules sometimes give different UD tags to tokens with the same underlying POS tag. The UD spec indicates these cases should be disambiguated using the output of a tool called "comainu", but rules are enough to get the right result. These rules are taken from Ginza at time of writing, see #3756. * Add new tags from GSD This is a few rare tags that aren't in Unidic but are in the GSD data. * Add basic Japanese sentencization This code is taken from Ginza again. * Add sentenceizer quote handling Could probably add more paired characters but this will do for now. Also includes some tests. * Replace fugashi with SudachiPy * Modify tag format to match GSD annotations Some of the tests still need to be updated, but I want to get this up for testing training. * Deal with case with closing punct without opening * refactor resolve_pos() * change tag field separator from "," to "-" * add TAG_ORTH_MAP * add TAG_BIGRAM_MAP * revise rules for 連体詞 * revise rules for 連体詞 * improve POS about 2% * add syntax_iterator.py (not mature yet) * improve syntax_iterators.py * improve syntax_iterators.py * add phrases including nouns and drop NPs consist of STOP_WORDS * First take at noun chunks This works in many situations but still has issues in others. If the start of a subtree has no noun, then nested phrases can be generated. また行きたい、そんな気持ちにさせてくれるお店です。 [そんな気持ち, また行きたい、そんな気持ちにさせてくれるお店] For some reason て gets included sometimes. Not sure why. ゲンに連れ添って円盤生物を調査するパートナーとなる。 [て円盤生物, ...] Some phrases that look like they should be split are grouped together; not entirely sure that's wrong. This whole thing becomes one chunk: 道の駅遠山郷北側からかぐら大橋南詰現道交点までの1.060kmのみ開通済み * Use new generic get_words_and_spaces The new get_words_and_spaces function is simpler than what was used in Japanese, so it's good to be able to switch to it. However, there was an issue. The new function works just on text, so POS info could get out of sync. Fixing this required a small change to the way dtokens (tokens with POS and lemma info) were generated. Specifically, multiple extraneous spaces now become a single token, so when generating dtokens multiple space tokens should be created in a row. * Fix noun_chunks, should be working now * Fix some tests, add naughty strings tests Some of the existing tests changed because the tokenization mode of Sudachi changed to the more fine-grained A mode. Sudachi also has issues with some strings, so this adds a test against the naughty strings. * Remove empty Sudachi tokens Not doing this creates zero-length tokens and causes errors in the internal spaCy processing. * Add yield_bunsetu back in as a separate piece of code Co-authored-by: Hiroshi Matsuda <40782025+hiroshi-matsuda-rit@users.noreply.github.com> Co-authored-by: hiroshi <hiroshi_matsuda@megagon.ai>
2020-06-04 20:15:43 +03:00
syntax_iterators = SYNTAX_ITERATORS
writing_system = {"direction": "ltr", "has_case": False, "has_letters": False}
2017-10-14 14:11:39 +03:00
@classmethod
def create_tokenizer(cls, nlp=None, config={}):
return JapaneseTokenizer(cls, nlp, config)
2017-05-03 07:56:21 +03:00
2017-05-03 07:56:21 +03:00
class Japanese(Language):
lang = "ja"
2017-10-14 14:11:39 +03:00
Defaults = JapaneseDefaults
2017-05-03 07:56:21 +03:00
def make_doc(self, text):
return self.tokenizer(text)
2017-05-03 12:07:29 +03:00
def pickle_japanese(instance):
return Japanese, tuple()
copy_reg.pickle(Japanese, pickle_japanese)
__all__ = ["Japanese"]