2015-04-08 09:20:15 +03:00
|
|
|
"""Set up a model directory.
|
|
|
|
|
|
|
|
Requires:
|
|
|
|
|
|
|
|
lang_data --- Rules for the tokenizer
|
|
|
|
* prefix.txt
|
|
|
|
* suffix.txt
|
|
|
|
* infix.txt
|
|
|
|
* morphs.json
|
|
|
|
* specials.json
|
|
|
|
|
|
|
|
corpora --- Data files
|
|
|
|
* WordNet
|
|
|
|
* words.sgt.prob --- Smoothed unigram probabilities
|
|
|
|
* clusters.txt --- Output of hierarchical clustering, e.g. Brown clusters
|
|
|
|
* vectors.tgz --- output of something like word2vec
|
|
|
|
"""
|
2015-04-08 08:46:53 +03:00
|
|
|
import plac
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
from shutil import copyfile
|
|
|
|
import codecs
|
|
|
|
|
|
|
|
from spacy.en import get_lex_props
|
|
|
|
from spacy.vocab import Vocab
|
2015-04-08 09:20:15 +03:00
|
|
|
from spacy.vocab import write_binary_vectors
|
2015-04-08 08:46:53 +03:00
|
|
|
|
|
|
|
|
|
|
|
def setup_tokenizer(lang_data_dir, tok_dir):
|
|
|
|
if not tok_dir.exists():
|
|
|
|
tok_dir.mkdir()
|
|
|
|
|
|
|
|
for filename in ('infix.txt', 'morphs.json', 'prefix.txt', 'specials.json',
|
|
|
|
'suffix.txt'):
|
|
|
|
src = lang_data_dir / filename
|
|
|
|
dst = tok_dir / filename
|
|
|
|
if not dst.exists():
|
|
|
|
copyfile(src, dst)
|
|
|
|
|
|
|
|
|
|
|
|
def _read_clusters(loc):
|
|
|
|
clusters = {}
|
|
|
|
for line in codecs.open(str(loc), 'r', 'utf8'):
|
|
|
|
try:
|
|
|
|
cluster, word, freq = line.split()
|
|
|
|
except ValueError:
|
|
|
|
continue
|
|
|
|
clusters[word] = cluster
|
|
|
|
return clusters
|
|
|
|
|
|
|
|
|
|
|
|
def _read_probs(loc):
|
|
|
|
probs = {}
|
|
|
|
for i, line in enumerate(codecs.open(str(loc), 'r', 'utf8')):
|
|
|
|
prob, word = line.split()
|
|
|
|
prob = float(prob)
|
|
|
|
probs[word] = prob
|
|
|
|
return probs
|
|
|
|
|
|
|
|
|
|
|
|
def setup_vocab(src_dir, dst_dir):
|
|
|
|
if not dst_dir.exists():
|
|
|
|
dst_dir.mkdir()
|
2015-04-08 09:20:15 +03:00
|
|
|
|
|
|
|
vectors_src = src_dir / 'vectors.tgz'
|
|
|
|
if vectors_src.exists():
|
|
|
|
write_binary_vectors(str(vectors_src), str(dst_dir / 'vec.bin'))
|
2015-04-08 08:46:53 +03:00
|
|
|
vocab = Vocab(data_dir=None, get_lex_props=get_lex_props)
|
|
|
|
clusters = _read_clusters(src_dir / 'clusters.txt')
|
|
|
|
probs = _read_probs(src_dir / 'words.sgt.prob')
|
|
|
|
lexicon = []
|
|
|
|
for word, prob in reversed(sorted(probs.items(), key=lambda item: item[1])):
|
|
|
|
entry = get_lex_props(word)
|
|
|
|
if word in clusters or float(prob) >= -17:
|
|
|
|
entry['prob'] = float(prob)
|
|
|
|
cluster = clusters.get(word, '0')
|
|
|
|
# Decode as a little-endian string, so that we can do & 15 to get
|
|
|
|
# the first 4 bits. See _parse_features.pyx
|
|
|
|
entry['cluster'] = int(cluster[::-1], 2)
|
|
|
|
vocab[word] = entry
|
|
|
|
vocab.dump(str(dst_dir / 'lexemes.bin'))
|
|
|
|
vocab.strings.dump(str(dst_dir / 'strings.txt'))
|
|
|
|
|
|
|
|
|
2015-04-08 09:20:15 +03:00
|
|
|
def main(lang_data_dir, corpora_dir, model_dir):
|
2015-04-08 08:46:53 +03:00
|
|
|
model_dir = Path(model_dir)
|
|
|
|
lang_data_dir = Path(lang_data_dir)
|
2015-04-08 09:20:15 +03:00
|
|
|
corpora_dir = Path(corpora_dir)
|
|
|
|
|
|
|
|
assert corpora_dir.exists()
|
|
|
|
assert lang_data_dir.exists()
|
2015-04-08 08:46:53 +03:00
|
|
|
|
|
|
|
if not model_dir.exists():
|
|
|
|
model_dir.mkdir()
|
|
|
|
|
|
|
|
setup_tokenizer(lang_data_dir, model_dir / 'tokenizer')
|
2015-04-08 09:20:15 +03:00
|
|
|
setup_vocab(corpora_dir, model_dir / 'vocab')
|
|
|
|
if not (model_dir / 'wordnet').exists():
|
|
|
|
copytree(str(corpora_dir / 'wordnet'), str(model_dir / 'wordnet'))
|
2015-04-08 08:46:53 +03:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
plac.call(main)
|