spaCy/spacy/serialize/packer.pyx

133 lines
3.8 KiB
Cython
Raw Normal View History

from libc.stdint cimport uint32_t
from libc.stdint cimport uint64_t
from libc.math cimport exp as c_exp
from libcpp.queue cimport priority_queue
from libcpp.pair cimport pair
from cymem.cymem cimport Address, Pool
from preshed.maps cimport PreshMap
from ..attrs cimport ID, ORTH, SPACY, TAG, HEAD, DEP, ENT_IOB, ENT_TYPE
from ..tokens.doc cimport Doc
from ..vocab cimport Vocab
from ..typedefs cimport attr_t
from .bits cimport BitArray
from .huffman cimport HuffmanCodec
from os import path
import numpy
cimport cython
# Format
# - Total number of bytes in message (32 bit int) --- handled outside this
# - Number of words (32 bit int)
# - Words, terminating in an EOL symbol, huffman coded ~12 bits per word
# - Spaces 1 bit per word
# - Attributes:
# POS tag
# Head offset
# Dep label
# Entity IOB
# Entity tag
def make_vocab_codec(Vocab vocab):
cdef int length = len(vocab)
cdef Address mem = Address(length, sizeof(float))
probs = <float*>mem.ptr
cdef int i
for i in range(length):
probs[i] = <float>c_exp(vocab.lexemes[i].prob)
cdef float[:] cv_probs = <float[:len(vocab)]>probs
return HuffmanCodec(cv_probs)
cdef class _BinaryCodec:
def encode(self, attr_t[:] msg, BitArray bits):
cdef int i
for i in range(len(msg)):
bits.append(msg[i])
def decode(self, bits, attr_t[:] msg):
for i in range(len(msg)):
msg[i] = bits.next()
cdef class _AttributeCodec:
cdef Pool mem
cdef attr_t* _keys
cdef PreshMap _map
cdef HuffmanCodec _codec
def __init__(self, freqs):
self.mem = Pool()
cdef uint64_t key
cdef uint64_t count
cdef pair[uint64_t, uint64_t] item
cdef priority_queue[pair[uint64_t, uint64_t]] items
for key, count in freqs:
item.first = count
item.second = key
items.push(item)
weights = numpy.ndarray(shape=(len(freqs),), dtype=numpy.float32)
self._keys = <attr_t*>self.mem.alloc(len(freqs), sizeof(attr_t))
self._map = PreshMap()
cdef int i = 0
while not items.empty():
item = items.top()
# We put freq first above, for sorting
self._keys[i] = item.second
weights[i] = item.first
self._map[self._keys[i]] = i
items.pop()
i += 1
self._codec = HuffmanCodec(weights)
def encode(self, attr_t[:] msg, BitArray dest):
for i in range(len(msg)):
msg[i] = <attr_t>self._map[msg[i]]
self._codec.encode(msg, dest)
def decode(self, BitArray bits, attr_t[:] dest):
cdef int i
self._codec.decode(bits, dest)
for i in range(len(dest)):
dest[i] = <attr_t>self._keys[dest[i]]
cdef class Packer:
def __init__(self, Vocab vocab, list_of_attr_freqs):
self.vocab = vocab
codecs = []
self.attrs = []
for attr, freqs in list_of_attr_freqs:
if attr == ORTH:
codecs.append(make_vocab_codec(vocab))
elif attr == SPACY:
codecs.append(_BinaryCodec())
else:
codecs.append(_AttributeCodec(freqs))
self.attrs.append(attr)
self._codecs = tuple(codecs)
def pack(self, Doc doc):
array = doc.to_array(self.attrs)
cdef BitArray bits = BitArray()
cdef uint32_t length = len(array)
bits.extend(length, 32)
for i, codec in enumerate(self._codecs):
codec.encode(array[i], bits)
return bits
def unpack(self, bits):
cdef uint32_t length = bits.read(32)
array = numpy.ndarray(shape=(len(self.codecs), length), dtype=numpy.int)
for i, codec in enumerate(self.codecs):
array[i] = codec.decode(bits)
return Doc.from_array(self.vocab, self.attrs, array)