spaCy/spacy/cli/init_config.py

232 lines
9.5 KiB
Python
Raw Normal View History

2020-08-14 17:49:26 +03:00
from typing import Optional, List, Tuple
2020-08-13 18:38:30 +03:00
from enum import Enum
from pathlib import Path
2020-08-14 17:49:26 +03:00
from wasabi import Printer, diff_strings
from thinc.api import Config
2020-08-13 18:38:30 +03:00
import srsly
import re
from jinja2 import Template
2020-08-14 15:06:22 +03:00
from .. import util
from ..language import DEFAULT_CONFIG_PRETRAIN_PATH
from ..schemas import RecommendationSchema
2021-03-12 12:00:31 +03:00
from ._util import init_cli, Arg, Opt, show_validation_error, COMMAND
from ._util import string_to_list, import_code
2020-08-13 18:38:30 +03:00
ROOT = Path(__file__).parent / "templates"
TEMPLATE_PATH = ROOT / "quickstart_training.jinja"
RECOMMENDATIONS = srsly.read_yaml(ROOT / "quickstart_training_recommendations.yml")
2020-08-13 18:38:30 +03:00
class Optimizations(str, Enum):
efficiency = "efficiency"
accuracy = "accuracy"
@init_cli.command("config")
def init_config_cli(
# fmt: off
2020-08-21 13:06:19 +03:00
output_file: Path = Arg(..., help="File to save config.cfg to or - for stdout (will only output config and no additional logging info)", allow_dash=True),
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167) * 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 16:21:40 +03:00
lang: str = Opt("en", "--lang", "-l", help="Two-letter code of the language to use"),
pipeline: str = Opt("tagger,parser,ner", "--pipeline", "-p", help="Comma-separated names of trainable pipeline components to include (without 'tok2vec' or 'transformer')"),
2020-08-13 18:38:30 +03:00
optimize: Optimizations = Opt(Optimizations.efficiency.value, "--optimize", "-o", help="Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters."),
2020-12-09 03:00:51 +03:00
gpu: bool = Opt(False, "--gpu", "-G", help="Whether the model can run on GPU. This will impact the choice of architecture, pretrained weights and related hyperparameters."),
2020-09-17 17:05:40 +03:00
pretraining: bool = Opt(False, "--pretraining", "-pt", help="Include config for pretraining (with 'spacy pretrain')"),
force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"),
# fmt: on
):
2020-08-13 18:38:30 +03:00
"""
Generate a starter config.cfg for training. Based on your requirements
specified via the CLI arguments, this command generates a config with the
2020-09-22 11:40:05 +03:00
optimal settings for your use case. This includes the choice of architecture,
2020-08-13 18:38:30 +03:00
pretrained weights and related hyperparameters.
2020-09-04 13:58:50 +03:00
DOCS: https://spacy.io/api/cli#init-config
2020-08-13 18:38:30 +03:00
"""
pipeline = string_to_list(pipeline)
is_stdout = str(output_file) == "-"
if not is_stdout and output_file.exists() and not force_overwrite:
msg = Printer()
msg.fail(
"The provided output file already exists. To force overwriting the config file, set the --force or -F flag.",
exits=1,
)
2020-12-08 19:37:20 +03:00
config = init_config(
2020-09-17 17:57:02 +03:00
lang=lang,
pipeline=pipeline,
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167) * 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 16:21:40 +03:00
optimize=optimize.value,
2020-12-09 03:00:51 +03:00
gpu=gpu,
2020-09-17 17:57:02 +03:00
pretraining=pretraining,
silent=is_stdout,
2020-09-17 17:57:02 +03:00
)
2020-12-08 19:37:20 +03:00
save_config(config, output_file, is_stdout=is_stdout)
2020-08-14 17:49:26 +03:00
@init_cli.command("fill-config")
def init_fill_config_cli(
# fmt: off
base_path: Path = Arg(..., help="Base config to fill", exists=True, dir_okay=False),
output_file: Path = Arg("-", help="File to save config.cfg to (or - for stdout)", allow_dash=True),
2020-09-17 17:57:02 +03:00
pretraining: bool = Opt(False, "--pretraining", "-pt", help="Include config for pretraining (with 'spacy pretrain')"),
2021-03-12 12:00:31 +03:00
diff: bool = Opt(False, "--diff", "-D", help="Print a visual diff highlighting the changes"),
code_path: Optional[Path] = Opt(None, "--code-path", "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
2020-08-14 17:49:26 +03:00
# fmt: on
):
"""
Fill partial config.cfg with default values. Will add all missing settings
from the default config and will create all objects, check the registered
functions for their default values and update the base config. This command
can be used with a config generated via the training quickstart widget:
https://spacy.io/usage/training#quickstart
2020-09-04 13:58:50 +03:00
DOCS: https://spacy.io/api/cli#init-fill-config
2020-08-14 17:49:26 +03:00
"""
2021-03-12 12:00:31 +03:00
import_code(code_path)
fill_config(output_file, base_path, pretraining=pretraining, diff=diff)
2020-08-14 17:49:26 +03:00
def fill_config(
output_file: Path,
base_path: Path,
*,
pretraining: bool = False,
diff: bool = False,
silent: bool = False,
2020-08-14 17:49:26 +03:00
) -> Tuple[Config, Config]:
is_stdout = str(output_file) == "-"
no_print = is_stdout or silent
msg = Printer(no_print=no_print)
2020-08-14 17:49:26 +03:00
with show_validation_error(hint_fill=False):
2020-08-16 16:46:29 +03:00
config = util.load_config(base_path)
nlp = util.load_model_from_config(config, auto_fill=True, validate=False)
# Load a second time with validation to be extra sure that the produced
# config result is a valid config
nlp = util.load_model_from_config(nlp.config)
filled = nlp.config
# If we have sourced components in the base config, those will have been
# replaced with their actual config after loading, so we have to re-add them
sourced = util.get_sourced_components(config)
filled["components"].update(sourced)
if pretraining:
validate_config_for_pretrain(filled, msg)
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = pretrain_config.merge(filled)
before = config.to_str()
after = filled.to_str()
if before == after:
msg.warn("Nothing to auto-fill: base config is already complete")
else:
msg.good("Auto-filled config with all values")
if diff and not no_print:
if before == after:
msg.warn("No diff to show: nothing was auto-filled")
else:
msg.divider("START CONFIG DIFF")
print("")
print(diff_strings(before, after))
msg.divider("END CONFIG DIFF")
print("")
save_config(filled, output_file, is_stdout=is_stdout, silent=silent)
return config, filled
2020-08-14 17:49:26 +03:00
def init_config(
2020-09-17 17:57:02 +03:00
*,
lang: str,
pipeline: List[str],
optimize: str,
2020-12-09 03:00:51 +03:00
gpu: bool,
2020-09-17 17:57:02 +03:00
pretraining: bool = False,
silent: bool = True,
2020-12-08 19:37:20 +03:00
) -> Config:
msg = Printer(no_print=silent)
2020-08-13 18:38:30 +03:00
with TEMPLATE_PATH.open("r") as f:
template = Template(f.read())
# Filter out duplicates since tok2vec and transformer are added by template
pipeline = [pipe for pipe in pipeline if pipe not in ("tok2vec", "transformer")]
defaults = RECOMMENDATIONS["__default__"]
reco = RecommendationSchema(**RECOMMENDATIONS.get(lang, defaults)).dict()
2020-08-13 18:38:30 +03:00
variables = {
"lang": lang,
"components": pipeline,
"optimize": optimize,
2020-12-09 03:00:51 +03:00
"hardware": "gpu" if gpu else "cpu",
2020-08-15 15:50:29 +03:00
"transformer_data": reco["transformer"],
"word_vectors": reco["word_vectors"],
"has_letters": reco["has_letters"],
2020-08-13 18:38:30 +03:00
}
2020-08-21 13:06:19 +03:00
if variables["transformer_data"] and not has_spacy_transformers():
msg.warn(
"To generate a more effective transformer-based config (GPU-only), "
"install the spacy-transformers package and re-run this command. "
"The config generated now does not use transformers."
)
variables["transformer_data"] = None
2020-08-15 15:50:29 +03:00
base_template = template.render(variables).strip()
2020-08-13 18:38:30 +03:00
# Giving up on getting the newlines right in jinja for now
base_template = re.sub(r"\n\n\n+", "\n\n", base_template)
2020-08-15 15:50:29 +03:00
# Access variables declared in templates
template_vars = template.make_module(variables)
2020-08-13 18:38:30 +03:00
use_case = {
"Language": lang,
"Pipeline": ", ".join(pipeline),
"Optimize for": optimize,
"Hardware": variables["hardware"].upper(),
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167) * 🚨 Ignore all existing Mypy errors * 🏗 Add Mypy check to CI * Add types-mock and types-requests as dev requirements * Add additional type ignore directives * Add types packages to dev-only list in reqs test * Add types-dataclasses for python 3.6 * Add ignore to pretrain * 🏷 Improve type annotation on `run_command` helper The `run_command` helper previously declared that it returned an `Optional[subprocess.CompletedProcess]`, but it isn't actually possible for the function to return `None`. These changes modify the type annotation of the `run_command` helper and remove all now-unnecessary `# type: ignore` directives. * 🔧 Allow variable type redefinition in limited contexts These changes modify how Mypy is configured to allow variables to have their type automatically redefined under certain conditions. The Mypy documentation contains the following example: ```python def process(items: List[str]) -> None: # 'items' has type List[str] items = [item.split() for item in items] # 'items' now has type List[List[str]] ... ``` This configuration change is especially helpful in reducing the number of `# type: ignore` directives needed to handle the common pattern of: * Accepting a filepath as a string * Overwriting the variable using `filepath = ensure_path(filepath)` These changes enable redefinition and remove all `# type: ignore` directives rendered redundant by this change. * 🏷 Add type annotation to converters mapping * 🚨 Fix Mypy error in convert CLI argument verification * 🏷 Improve type annotation on `resolve_dot_names` helper * 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors` * 🏷 Add type annotations for more `Vocab` attributes * 🏷 Add loose type annotation for gold data compilation * 🏷 Improve `_format_labels` type annotation * 🏷 Fix `get_lang_class` type annotation * 🏷 Loosen return type of `Language.evaluate` * 🏷 Don't accept `Scorer` in `handle_scores_per_type` * 🏷 Add `string_to_list` overloads * 🏷 Fix non-Optional command-line options * 🙈 Ignore redefinition of `wandb_logger` in `loggers.py` * ➕ Install `typing_extensions` in Python 3.8+ The `typing_extensions` package states that it should be used when "writing code that must be compatible with multiple Python versions". Since SpaCy needs to support multiple Python versions, it should be used when newer `typing` module members are required. One example of this is `Literal`, which is available starting with Python 3.8. Previously SpaCy tried to import `Literal` from `typing`, falling back to `typing_extensions` if the import failed. However, Mypy doesn't seem to be able to understand what `Literal` means when the initial import means. Therefore, these changes modify how `compat` imports `Literal` by always importing it from `typing_extensions`. These changes also modify how `typing_extensions` is installed, so that it is a requirement for all Python versions, including those greater than or equal to 3.8. * 🏷 Improve type annotation for `Language.pipe` These changes add a missing overload variant to the type signature of `Language.pipe`. Additionally, the type signature is enhanced to allow type checkers to differentiate between the two overload variants based on the `as_tuple` parameter. Fixes #8772 * ➖ Don't install `typing-extensions` in Python 3.8+ After more detailed analysis of how to implement Python version-specific type annotations using SpaCy, it has been determined that by branching on a comparison against `sys.version_info` can be statically analyzed by Mypy well enough to enable us to conditionally use `typing_extensions.Literal`. This means that we no longer need to install `typing_extensions` for Python versions greater than or equal to 3.8! 🎉 These changes revert previous changes installing `typing-extensions` regardless of Python version and modify how we import the `Literal` type to ensure that Mypy treats it properly. * resolve mypy errors for Strict pydantic types * refactor code to avoid missing return statement * fix types of convert CLI command * avoid list-set confustion in debug_data * fix typo and formatting * small fixes to avoid type ignores * fix types in profile CLI command and make it more efficient * type fixes in projects CLI * put one ignore back * type fixes for render * fix render types - the sequel * fix BaseDefault in language definitions * fix type of noun_chunks iterator - yields tuple instead of span * fix types in language-specific modules * 🏷 Expand accepted inputs of `get_string_id` `get_string_id` accepts either a string (in which case it returns its ID) or an ID (in which case it immediately returns the ID). These changes extend the type annotation of `get_string_id` to indicate that it can accept either strings or IDs. * 🏷 Handle override types in `combine_score_weights` The `combine_score_weights` function allows users to pass an `overrides` mapping to override data extracted from the `weights` argument. Since it allows `Optional` dictionary values, the return value may also include `Optional` dictionary values. These changes update the type annotations for `combine_score_weights` to reflect this fact. * 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer` * 🏷 Fix redefinition of `wandb_logger` These changes fix the redefinition of `wandb_logger` by giving a separate name to each `WandbLogger` version. For backwards-compatibility, `spacy.train` still exports `wandb_logger_v3` as `wandb_logger` for now. * more fixes for typing in language * type fixes in model definitions * 🏷 Annotate `_RandomWords.probs` as `NDArray` * 🏷 Annotate `tok2vec` layers to help Mypy * 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6 Also remove an import that I forgot to move to the top of the module 😅 * more fixes for matchers and other pipeline components * quick fix for entity linker * fixing types for spancat, textcat, etc * bugfix for tok2vec * type annotations for scorer * add runtime_checkable for Protocol * type and import fixes in tests * mypy fixes for training utilities * few fixes in util * fix import * 🐵 Remove unused `# type: ignore` directives * 🏷 Annotate `Language._components` * 🏷 Annotate `spacy.pipeline.Pipe` * add doc as property to span.pyi * small fixes and cleanup * explicit type annotations instead of via comment Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 16:21:40 +03:00
"Transformer": template_vars.transformer.get("name") # type: ignore[attr-defined]
if template_vars.use_transformer # type: ignore[attr-defined]
else None,
2020-08-13 18:38:30 +03:00
}
msg.info("Generated config template specific for your use case")
2020-08-13 18:38:30 +03:00
for label, value in use_case.items():
msg.text(f"- {label}: {value}")
2020-08-14 17:49:26 +03:00
with show_validation_error(hint_fill=False):
2020-08-15 15:50:29 +03:00
config = util.load_config_from_str(base_template)
nlp = util.load_model_from_config(config, auto_fill=True)
2020-09-17 17:05:40 +03:00
config = nlp.config
if pretraining:
validate_config_for_pretrain(config, msg)
pretrain_config = util.load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
config = pretrain_config.merge(config)
2020-08-13 18:38:30 +03:00
msg.good("Auto-filled config with all values")
2020-12-08 19:37:20 +03:00
return config
2020-08-14 17:49:26 +03:00
def save_config(
config: Config, output_file: Path, is_stdout: bool = False, silent: bool = False
) -> None:
no_print = is_stdout or silent
msg = Printer(no_print=no_print)
2020-08-13 18:38:30 +03:00
if is_stdout:
2020-08-14 17:49:26 +03:00
print(config.to_str())
2020-08-13 18:38:30 +03:00
else:
2020-08-26 11:26:57 +03:00
if not output_file.parent.exists():
output_file.parent.mkdir(parents=True)
2020-08-14 17:49:26 +03:00
config.to_disk(output_file, interpolate=False)
2020-08-13 18:38:30 +03:00
msg.good("Saved config", output_file)
msg.text("You can now add your data and train your pipeline:")
2020-08-13 18:38:30 +03:00
variables = ["--paths.train ./train.spacy", "--paths.dev ./dev.spacy"]
if not no_print:
print(f"{COMMAND} train {output_file.parts[-1]} {' '.join(variables)}")
2020-08-21 13:06:19 +03:00
def has_spacy_transformers() -> bool:
2020-08-13 18:38:30 +03:00
try:
import spacy_transformers # noqa: F401
2020-08-21 13:06:19 +03:00
return True
2020-08-13 18:38:30 +03:00
except ImportError:
return False
def validate_config_for_pretrain(config: Config, msg: Printer) -> None:
if "tok2vec" not in config["nlp"]["pipeline"]:
msg.warn(
"No tok2vec component found in the pipeline. If your tok2vec "
"component has a different name, you may need to adjust the "
"tok2vec_model reference in the [pretraining] block. If you don't "
"have a tok2vec component, make sure to add it to your [components] "
"and the pipeline specified in the [nlp] block, so you can pretrain "
"weights for it."
)