2020-06-26 20:34:12 +03:00
|
|
|
import random
|
|
|
|
from .. import util
|
|
|
|
from .example import Example
|
|
|
|
from ..tokens import DocBin, Doc
|
|
|
|
|
|
|
|
|
|
|
|
class Corpus:
|
|
|
|
"""An annotated corpus, reading train and dev datasets from
|
|
|
|
the DocBin (.spacy) format.
|
|
|
|
|
|
|
|
DOCS: https://spacy.io/api/goldcorpus
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, train_loc, dev_loc, limit=0):
|
|
|
|
"""Create a Corpus.
|
|
|
|
|
|
|
|
train (str / Path): File or directory of training data.
|
|
|
|
dev (str / Path): File or directory of development data.
|
|
|
|
limit (int): Max. number of examples returned
|
|
|
|
RETURNS (Corpus): The newly created object.
|
|
|
|
"""
|
|
|
|
self.train_loc = train_loc
|
|
|
|
self.dev_loc = dev_loc
|
|
|
|
self.limit = limit
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def walk_corpus(path):
|
|
|
|
path = util.ensure_path(path)
|
|
|
|
if not path.is_dir():
|
|
|
|
return [path]
|
|
|
|
paths = [path]
|
|
|
|
locs = []
|
|
|
|
seen = set()
|
|
|
|
for path in paths:
|
|
|
|
if str(path) in seen:
|
|
|
|
continue
|
|
|
|
seen.add(str(path))
|
|
|
|
if path.parts[-1].startswith("."):
|
|
|
|
continue
|
|
|
|
elif path.is_dir():
|
|
|
|
paths.extend(path.iterdir())
|
|
|
|
elif path.parts[-1].endswith(".spacy"):
|
|
|
|
locs.append(path)
|
|
|
|
return locs
|
|
|
|
|
|
|
|
def make_examples(self, nlp, reference_docs, max_length=0):
|
|
|
|
for reference in reference_docs:
|
2020-06-29 15:33:00 +03:00
|
|
|
if len(reference) >= max_length >= 1:
|
2020-06-26 20:34:12 +03:00
|
|
|
if reference.is_sentenced:
|
|
|
|
for ref_sent in reference.sents:
|
|
|
|
yield Example(
|
|
|
|
nlp.make_doc(ref_sent.text),
|
|
|
|
ref_sent.as_doc()
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
yield Example(
|
|
|
|
nlp.make_doc(reference.text),
|
|
|
|
reference
|
|
|
|
)
|
|
|
|
|
|
|
|
def make_examples_gold_preproc(self, nlp, reference_docs):
|
|
|
|
for reference in reference_docs:
|
|
|
|
if reference.is_sentenced:
|
|
|
|
ref_sents = [sent.as_doc() for sent in reference.sents]
|
|
|
|
else:
|
|
|
|
ref_sents = [reference]
|
|
|
|
for ref_sent in ref_sents:
|
|
|
|
yield Example(
|
|
|
|
Doc(
|
|
|
|
nlp.vocab,
|
|
|
|
words=[w.text for w in ref_sent],
|
|
|
|
spaces=[bool(w.whitespace_) for w in ref_sent]
|
|
|
|
),
|
|
|
|
ref_sent
|
|
|
|
)
|
|
|
|
|
|
|
|
def read_docbin(self, vocab, locs):
|
|
|
|
""" Yield training examples as example dicts """
|
|
|
|
i = 0
|
|
|
|
for loc in locs:
|
|
|
|
loc = util.ensure_path(loc)
|
|
|
|
if loc.parts[-1].endswith(".spacy"):
|
|
|
|
with loc.open("rb") as file_:
|
|
|
|
doc_bin = DocBin().from_bytes(file_.read())
|
|
|
|
docs = doc_bin.get_docs(vocab)
|
|
|
|
for doc in docs:
|
|
|
|
if len(doc):
|
|
|
|
yield doc
|
|
|
|
i += 1
|
|
|
|
if self.limit >= 1 and i >= self.limit:
|
|
|
|
break
|
|
|
|
|
|
|
|
def count_train(self, nlp):
|
|
|
|
"""Returns count of words in train examples"""
|
|
|
|
n = 0
|
|
|
|
i = 0
|
|
|
|
for example in self.train_dataset(nlp):
|
|
|
|
n += len(example.predicted)
|
|
|
|
if self.limit >= 0 and i >= self.limit:
|
|
|
|
break
|
|
|
|
i += 1
|
|
|
|
return n
|
|
|
|
|
|
|
|
def train_dataset(self, nlp, *, shuffle=True, gold_preproc=False,
|
|
|
|
max_length=0, **kwargs):
|
|
|
|
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc))
|
|
|
|
if gold_preproc:
|
|
|
|
examples = self.make_examples_gold_preproc(nlp, ref_docs)
|
|
|
|
else:
|
|
|
|
examples = self.make_examples(nlp, ref_docs, max_length)
|
|
|
|
if shuffle:
|
|
|
|
examples = list(examples)
|
|
|
|
random.shuffle(examples)
|
|
|
|
yield from examples
|
|
|
|
|
|
|
|
def dev_dataset(self, nlp, *, gold_preproc=False, **kwargs):
|
|
|
|
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.dev_loc))
|
|
|
|
if gold_preproc:
|
|
|
|
examples = self.make_examples_gold_preproc(nlp, ref_docs)
|
|
|
|
else:
|
|
|
|
examples = self.make_examples(nlp, ref_docs, max_length=0)
|
|
|
|
yield from examples
|