mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 14:26:35 +03:00
83 lines
2.8 KiB
Python
83 lines
2.8 KiB
Python
|
from sputnik.dir_package import DirPackage
|
||
|
from sputnik.package_list import (PackageNotFoundException,
|
||
|
CompatiblePackageNotFoundException)
|
||
|
|
||
|
import sputnik
|
||
|
from . import about
|
||
|
|
||
|
|
||
|
def get_package(data_dir):
|
||
|
if not isinstance(data_dir, six.string_types):
|
||
|
raise RuntimeError('data_dir must be a string')
|
||
|
return DirPackage(data_dir)
|
||
|
|
||
|
|
||
|
def get_package_by_name(name=None, via=None):
|
||
|
if name is None:
|
||
|
return
|
||
|
lang = get_lang_class(name)
|
||
|
try:
|
||
|
return sputnik.package(about.__title__, about.__version__,
|
||
|
name, data_path=via)
|
||
|
except PackageNotFoundException as e:
|
||
|
raise RuntimeError("Model '%s' not installed. Please run 'python -m "
|
||
|
"%s.download' to install latest compatible "
|
||
|
"model." % (name, lang.__module__))
|
||
|
except CompatiblePackageNotFoundException as e:
|
||
|
raise RuntimeError("Installed model is not compatible with spaCy "
|
||
|
"version. Please run 'python -m %s.download "
|
||
|
"--force' to install latest compatible model." %
|
||
|
(lang.__module__))
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def read_lang_data(package):
|
||
|
tokenization = package.load_json(('tokenizer', 'specials.json'))
|
||
|
with package.open(('tokenizer', 'prefix.txt'), default=None) as file_:
|
||
|
prefix = read_prefix(file_) if file_ is not None else None
|
||
|
with package.open(('tokenizer', 'suffix.txt'), default=None) as file_:
|
||
|
suffix = read_suffix(file_) if file_ is not None else None
|
||
|
with package.open(('tokenizer', 'infix.txt'), default=None) as file_:
|
||
|
infix = read_infix(file_) if file_ is not None else None
|
||
|
return tokenization, prefix, suffix, infix
|
||
|
|
||
|
|
||
|
|
||
|
def align_tokens(ref, indices): # Deprecated, surely?
|
||
|
start = 0
|
||
|
queue = list(indices)
|
||
|
for token in ref:
|
||
|
end = start + len(token)
|
||
|
emit = []
|
||
|
while queue and queue[0][1] <= end:
|
||
|
emit.append(queue.pop(0))
|
||
|
yield token, emit
|
||
|
start = end
|
||
|
assert not queue
|
||
|
|
||
|
|
||
|
def detokenize(token_rules, words): # Deprecated?
|
||
|
"""To align with treebanks, return a list of "chunks", where a chunk is a
|
||
|
sequence of tokens that are separated by whitespace in actual strings. Each
|
||
|
chunk should be a tuple of token indices, e.g.
|
||
|
|
||
|
>>> detokenize(["ca<SEP>n't", '<SEP>!'], ["I", "ca", "n't", "!"])
|
||
|
[(0,), (1, 2, 3)]
|
||
|
"""
|
||
|
string = ' '.join(words)
|
||
|
for subtoks in token_rules:
|
||
|
# Algorithmically this is dumb, but writing a little list-based match
|
||
|
# machine? Ain't nobody got time for that.
|
||
|
string = string.replace(subtoks.replace('<SEP>', ' '), subtoks)
|
||
|
positions = []
|
||
|
i = 0
|
||
|
for chunk in string.split():
|
||
|
subtoks = chunk.split('<SEP>')
|
||
|
positions.append(tuple(range(i, i+len(subtoks))))
|
||
|
i += len(subtoks)
|
||
|
return positions
|
||
|
|
||
|
|
||
|
|