mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
140 lines
5.3 KiB
Cython
140 lines
5.3 KiB
Cython
|
from __future__ import division
|
||
|
from __future__ import unicode_literals
|
||
|
|
||
|
cimport cython
|
||
|
import random
|
||
|
import os
|
||
|
from os import path
|
||
|
import shutil
|
||
|
import json
|
||
|
|
||
|
from thinc.features cimport ConjFeat
|
||
|
|
||
|
from .context cimport fill_context
|
||
|
from .context cimport N_FIELDS
|
||
|
from .structs cimport Move, State
|
||
|
from .io_moves cimport fill_moves, transition, best_accepted
|
||
|
from .io_moves cimport set_accept_if_valid, set_accept_if_oracle
|
||
|
from .io_moves import get_n_moves
|
||
|
from ._state cimport init_state
|
||
|
from ._state cimport entity_is_open
|
||
|
from ._state cimport end_entity
|
||
|
from .annot cimport NERAnnotation
|
||
|
|
||
|
|
||
|
def setup_model_dir(entity_types, templates, model_dir):
|
||
|
if path.exists(model_dir):
|
||
|
shutil.rmtree(model_dir)
|
||
|
os.mkdir(model_dir)
|
||
|
config = {
|
||
|
'templates': templates,
|
||
|
'entity_types': entity_types,
|
||
|
}
|
||
|
with open(path.join(model_dir, 'config.json'), 'w') as file_:
|
||
|
json.dump(config, file_)
|
||
|
|
||
|
|
||
|
def train(train_sents, model_dir, nr_iter=10):
|
||
|
cdef Tokens tokens
|
||
|
cdef NERAnnotation gold_ner
|
||
|
parser = NERParser(model_dir)
|
||
|
for _ in range(nr_iter):
|
||
|
tp = 0
|
||
|
fp = 0
|
||
|
fn = 0
|
||
|
for i, (tokens, gold_ner) in enumerate(train_sents):
|
||
|
#print [tokens[i].string for i in range(tokens.length)]
|
||
|
test_ents = set(parser.train(tokens, gold_ner))
|
||
|
#print 'Test', test_ents
|
||
|
gold_ents = set(gold_ner.entities)
|
||
|
#print 'Gold', set(gold_ner.entities)
|
||
|
tp += len(gold_ents.intersection(test_ents))
|
||
|
fp += len(test_ents - gold_ents)
|
||
|
fn += len(gold_ents - test_ents)
|
||
|
p = tp / (tp + fp)
|
||
|
r = tp / (tp + fn)
|
||
|
f = 2 * ((p * r) / (p + r))
|
||
|
print 'P: %.3f' % p,
|
||
|
print 'R: %.3f' % r,
|
||
|
print 'F: %.3f' % f
|
||
|
random.shuffle(train_sents)
|
||
|
parser.model.end_training()
|
||
|
parser.model.dump(path.join(model_dir, 'model'))
|
||
|
|
||
|
|
||
|
cdef class NERParser:
|
||
|
def __init__(self, model_dir):
|
||
|
self.mem = Pool()
|
||
|
cfg = json.load(open(path.join(model_dir, 'config.json')))
|
||
|
templates = cfg['templates']
|
||
|
self.extractor = Extractor(templates, [ConjFeat] * len(templates))
|
||
|
self.entity_types = cfg['entity_types']
|
||
|
self.n_classes = get_n_moves(len(self.entity_types))
|
||
|
self._moves = <Move*>self.mem.alloc(self.n_classes, sizeof(Move))
|
||
|
fill_moves(self._moves, self.n_classes, self.entity_types)
|
||
|
self.model = LinearModel(self.n_classes)
|
||
|
if path.exists(path.join(model_dir, 'model')):
|
||
|
self.model.load(path.join(model_dir, 'model'))
|
||
|
|
||
|
self._context = <atom_t*>self.mem.alloc(N_FIELDS, sizeof(atom_t))
|
||
|
self._feats = <feat_t*>self.mem.alloc(self.extractor.n+1, sizeof(feat_t))
|
||
|
self._values = <weight_t*>self.mem.alloc(self.extractor.n+1, sizeof(weight_t))
|
||
|
self._scores = <weight_t*>self.mem.alloc(self.model.nr_class, sizeof(weight_t))
|
||
|
|
||
|
cpdef list train(self, Tokens tokens, NERAnnotation annot):
|
||
|
cdef Pool mem = Pool()
|
||
|
cdef State* s = init_state(mem, tokens.length)
|
||
|
cdef Move* guess
|
||
|
cdef Move* oracle_move
|
||
|
n_correct = 0
|
||
|
cdef int f = 0
|
||
|
while s.i < tokens.length:
|
||
|
fill_context(self._context, s, tokens)
|
||
|
self.extractor.extract(self._feats, self._values, self._context, NULL)
|
||
|
self.model.score(self._scores, self._feats, self._values)
|
||
|
|
||
|
set_accept_if_valid(self._moves, self.n_classes, s)
|
||
|
guess = best_accepted(self._moves, self._scores, self.n_classes)
|
||
|
assert guess.clas != 0
|
||
|
set_accept_if_oracle(self._moves, self.n_classes, s,
|
||
|
annot.starts, annot.ends, annot.labels)
|
||
|
oracle_move = best_accepted(self._moves, self._scores, self.n_classes)
|
||
|
assert oracle_move.clas != 0
|
||
|
if guess.clas == oracle_move.clas:
|
||
|
counts = {}
|
||
|
n_correct += 1
|
||
|
else:
|
||
|
counts = {guess.clas: {}, oracle_move.clas: {}}
|
||
|
self.extractor.count(counts[oracle_move.clas], self._feats, 1)
|
||
|
self.extractor.count(counts[guess.clas], self._feats, -1)
|
||
|
self.model.update(counts)
|
||
|
transition(s, guess)
|
||
|
tokens.ner[s.i-1] = s.tags[s.i-1]
|
||
|
if entity_is_open(s):
|
||
|
s.curr.label = annot.labels[s.curr.start]
|
||
|
end_entity(s)
|
||
|
entities = []
|
||
|
for i in range(s.j):
|
||
|
entities.append((s.ents[i].start, s.ents[i].end, s.ents[i].label))
|
||
|
return entities
|
||
|
|
||
|
cpdef list set_tags(self, Tokens tokens):
|
||
|
cdef Pool mem = Pool()
|
||
|
cdef State* s = init_state(mem, tokens.length)
|
||
|
cdef Move* move
|
||
|
while s.i < tokens.length:
|
||
|
fill_context(self._context, s, tokens)
|
||
|
self.extractor.extract(self._feats, self._values, self._context, NULL)
|
||
|
self.model.score(self._scores, self._feats, self._values)
|
||
|
set_accept_if_valid(self._moves, self.n_classes, s)
|
||
|
move = best_accepted(self._moves, self._scores, self.n_classes)
|
||
|
transition(s, move)
|
||
|
tokens.ner[s.i-1] = s.tags[s.i-1]
|
||
|
if entity_is_open(s):
|
||
|
s.curr.label = move.label
|
||
|
end_entity(s)
|
||
|
entities = []
|
||
|
for i in range(s.j):
|
||
|
entities.append((s.ents[i].start, s.ents[i].end, s.ents[i].label))
|
||
|
return entities
|