spaCy/examples/pipeline/multi_processing.py

79 lines
2.7 KiB
Python
Raw Normal View History

2017-11-01 02:43:22 +03:00
#!/usr/bin/env python
# coding: utf8
"""Example of multi-processing with Joblib. Here, we're exporting
2017-10-27 02:50:44 +03:00
part-of-speech-tagged, true-cased, (very roughly) sentence-separated text, with
each "sentence" on a newline, and spaces between tokens. Data is loaded from
the IMDB movie reviews dataset and will be loaded automatically via Thinc's
built-in dataset loader.
2017-10-27 02:48:52 +03:00
2017-11-07 03:22:30 +03:00
Compatible with: spaCy v2.0.0+
2017-10-27 02:48:52 +03:00
"""
2017-10-27 02:50:44 +03:00
from __future__ import print_function, unicode_literals
2017-10-27 02:48:52 +03:00
from toolz import partition_all
from pathlib import Path
from joblib import Parallel, delayed
import thinc.extra.datasets
import plac
import spacy
@plac.annotations(
output_dir=("Output directory", "positional", None, Path),
model=("Model name (needs tagger)", "positional", None, str),
n_jobs=("Number of workers", "option", "n", int),
batch_size=("Batch-size for each process", "option", "b", int),
limit=("Limit of entries from the dataset", "option", "l", int))
def main(output_dir, model='en_core_web_sm', n_jobs=4, batch_size=1000,
limit=10000):
nlp = spacy.load(model) # load spaCy model
print("Loaded model '%s'" % model)
if not output_dir.exists():
output_dir.mkdir()
# load and pre-process the IMBD dataset
print("Loading IMDB data...")
data, _ = thinc.extra.datasets.imdb()
texts, _ = zip(*data[-limit:])
2017-11-05 01:06:55 +03:00
print("Processing texts...")
2017-10-27 02:48:52 +03:00
partitions = partition_all(batch_size, texts)
2017-11-05 01:07:57 +03:00
executor = Parallel(n_jobs=n_jobs)
do = delayed(transform_texts)
tasks = (do(nlp, i, batch, output_dir)
for i, batch in enumerate(partitions))
executor(tasks)
2017-10-27 02:48:52 +03:00
2017-11-05 01:07:57 +03:00
def transform_texts(nlp, batch_id, texts, output_dir):
print(nlp.pipe_names)
2017-10-27 02:48:52 +03:00
out_path = Path(output_dir) / ('%d.txt' % batch_id)
if out_path.exists(): # return None in case same batch is called again
return None
print('Processing batch', batch_id)
with out_path.open('w', encoding='utf8') as f:
2017-11-05 01:07:57 +03:00
for doc in nlp.pipe(texts):
2017-10-27 02:48:52 +03:00
f.write(' '.join(represent_word(w) for w in doc if not w.is_space))
f.write('\n')
2017-11-05 01:07:57 +03:00
print('Saved {} texts to {}.txt'.format(len(texts), batch_id))
2017-10-27 02:48:52 +03:00
def represent_word(word):
text = word.text
# True-case, i.e. try to normalize sentence-initial capitals.
# Only do this if the lower-cased form is more probable.
if text.istitle() and is_sent_begin(word) \
and word.prob < word.doc.vocab[text.lower()].prob:
text = text.lower()
return text + '|' + word.tag_
def is_sent_begin(word):
if word.i == 0:
return True
elif word.i >= 2 and word.nbor(-1).text in ('.', '!', '?', '...'):
return True
else:
return False
if __name__ == '__main__':
plac.call(main)