spaCy/spacy/tests/regression/test_issue5230.py

142 lines
4.1 KiB
Python
Raw Normal View History

import warnings
from unittest import TestCase
import pytest
import srsly
2020-04-06 21:51:12 +03:00
from numpy import zeros
from spacy.kb import KnowledgeBase, Writer
from spacy.vectors import Vectors
from spacy.language import Language
from spacy.pipeline import Pipe
2020-05-22 15:22:36 +03:00
from ..util import make_tempdir
2020-04-06 21:51:12 +03:00
def nlp():
return Language()
2020-04-06 21:51:12 +03:00
def vectors():
data = zeros((3, 1), dtype="f")
keys = ["cat", "dog", "rat"]
2020-04-06 21:51:12 +03:00
return Vectors(data=data, keys=keys)
2020-04-06 21:51:12 +03:00
def custom_pipe():
# create dummy pipe partially implementing interface -- only want to test to_disk
class SerializableDummy(object):
def __init__(self, **cfg):
if cfg:
self.cfg = cfg
else:
self.cfg = None
super(SerializableDummy, self).__init__()
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
def from_bytes(self, bytes_data, exclude):
return self
def to_disk(self, path, exclude=tuple(), **kwargs):
pass
def from_disk(self, path, exclude=tuple(), **kwargs):
return self
class MyPipe(Pipe):
def __init__(self, vocab, model=True, **cfg):
if cfg:
self.cfg = cfg
else:
self.cfg = None
self.model = SerializableDummy()
self.vocab = SerializableDummy()
2020-04-06 21:51:12 +03:00
return MyPipe(None)
2020-04-06 21:51:12 +03:00
def tagger():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("tagger"))
tagger = nlp.get_pipe("tagger")
# need to add model for two reasons:
# 1. no model leads to error in serialization,
# 2. the affected line is the one for model serialization
tagger.begin_training(pipeline=nlp.pipeline)
2020-04-06 21:51:12 +03:00
return tagger
2020-04-06 21:51:12 +03:00
def entity_linker():
nlp = Language()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
nlp.add_pipe(nlp.create_pipe("entity_linker", {"kb": kb}))
entity_linker = nlp.get_pipe("entity_linker")
# need to add model for two reasons:
# 1. no model leads to error in serialization,
# 2. the affected line is the one for model serialization
entity_linker.begin_training(pipeline=nlp.pipeline)
2020-04-06 21:51:12 +03:00
return entity_linker
objects_to_test = (
2020-04-06 21:51:12 +03:00
[nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
2020-04-06 21:51:12 +03:00
)
def write_obj_and_catch_warnings(obj):
with make_tempdir() as d:
2020-04-06 21:51:12 +03:00
with warnings.catch_warnings(record=True) as warnings_list:
warnings.filterwarnings("always", category=ResourceWarning)
2020-04-06 21:51:12 +03:00
obj.to_disk(d)
# in python3.5 it seems that deprecation warnings are not filtered by filterwarnings
return list(filter(lambda x: isinstance(x, ResourceWarning), warnings_list))
@pytest.mark.parametrize("obj", objects_to_test[0], ids=objects_to_test[1])
def test_to_disk_resource_warning(obj):
warnings_list = write_obj_and_catch_warnings(obj)
assert len(warnings_list) == 0
def test_writer_with_path_py35():
writer = None
with make_tempdir() as d:
path = d / "test"
try:
writer = Writer(path)
except Exception as e:
pytest.fail(str(e))
finally:
if writer:
writer.close()
def test_save_and_load_knowledge_base():
nlp = Language()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
with make_tempdir() as d:
path = d / "kb"
try:
kb.dump(path)
except Exception as e:
pytest.fail(str(e))
try:
kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1)
kb_loaded.load_bulk(path)
except Exception as e:
pytest.fail(str(e))
class TestToDiskResourceWarningUnittest(TestCase):
def test_resource_warning(self):
scenarios = zip(*objects_to_test)
2020-05-22 15:22:36 +03:00
for scenario in scenarios:
with self.subTest(msg=scenario[1]):
warnings_list = write_obj_and_catch_warnings(scenario[0])
self.assertEqual(len(warnings_list), 0)