mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-04 22:36:32 +03:00
123 lines
4.0 KiB
Python
123 lines
4.0 KiB
Python
|
import pytest
|
||
|
import numpy
|
||
|
from spacy.lang.en import English
|
||
|
from spacy.pipeline import AttributeRuler
|
||
|
from spacy import util
|
||
|
|
||
|
from ..util import get_doc, make_tempdir
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def nlp():
|
||
|
return English()
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def tag_map():
|
||
|
return {
|
||
|
".": {"POS": "PUNCT", "PunctType": "peri"},
|
||
|
",": {"POS": "PUNCT", "PunctType": "comm"},
|
||
|
}
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def morph_rules():
|
||
|
return {"DT": {"the": {"POS": "DET", "LEMMA": "a", "Case": "Nom"}}}
|
||
|
|
||
|
|
||
|
def test_attributeruler_init(nlp):
|
||
|
a = AttributeRuler(nlp.vocab)
|
||
|
|
||
|
a = nlp.add_pipe("attribute_ruler")
|
||
|
a.add([[{"ORTH": "a"}]], {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"})
|
||
|
a.add([[{"ORTH": "test"}]], {"LEMMA": "cat", "MORPH": "Number=Sing|Case=Nom"})
|
||
|
a.add([[{"ORTH": "test"}]], {"LEMMA": "dog"})
|
||
|
|
||
|
doc = nlp("This is a test.")
|
||
|
assert doc[2].lemma_ == "the"
|
||
|
assert doc[2].morph_ == "Case=Nom|Number=Plur"
|
||
|
assert doc[3].lemma_ == "cat"
|
||
|
assert doc[3].morph_ == "Case=Nom|Number=Sing"
|
||
|
|
||
|
|
||
|
def test_attributeruler_tag_map(nlp, tag_map):
|
||
|
a = AttributeRuler(nlp.vocab)
|
||
|
a.load_from_tag_map(tag_map)
|
||
|
doc = get_doc(nlp.vocab, words=["This", "is", "a", "test", "."], tags=["DT", "VBZ", "DT", "NN", "."])
|
||
|
doc = a(doc)
|
||
|
|
||
|
for i in range(len(doc)):
|
||
|
if i == 4:
|
||
|
assert doc[i].pos_ == "PUNCT"
|
||
|
assert doc[i].morph_ == "PunctType=peri"
|
||
|
else:
|
||
|
assert doc[i].pos_ == ""
|
||
|
assert doc[i].morph_ == ""
|
||
|
|
||
|
|
||
|
def test_attributeruler_morph_rules(nlp, morph_rules):
|
||
|
a = AttributeRuler(nlp.vocab)
|
||
|
a.load_from_morph_rules(morph_rules)
|
||
|
doc = get_doc(nlp.vocab, words=["This", "is", "the", "test", "."], tags=["DT", "VBZ", "DT", "NN", "."])
|
||
|
doc = a(doc)
|
||
|
|
||
|
for i in range(len(doc)):
|
||
|
if i != 2:
|
||
|
assert doc[i].pos_ == ""
|
||
|
assert doc[i].morph_ == ""
|
||
|
else:
|
||
|
assert doc[2].pos_ == "DET"
|
||
|
assert doc[2].lemma_ == "a"
|
||
|
assert doc[2].morph_ == "Case=Nom"
|
||
|
|
||
|
|
||
|
def test_attributeruler_indices(nlp):
|
||
|
a = nlp.add_pipe("attribute_ruler")
|
||
|
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"}, index=0)
|
||
|
a.add([[{"ORTH": "This"}, {"ORTH": "is"}]], {"LEMMA": "was", "MORPH": "Case=Nom|Number=Sing"}, index=1)
|
||
|
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=-1)
|
||
|
|
||
|
text = "This is a test."
|
||
|
doc = nlp(text)
|
||
|
|
||
|
for i in range(len(doc)):
|
||
|
if i == 1:
|
||
|
assert doc[i].lemma_ == "was"
|
||
|
assert doc[i].morph_ == "Case=Nom|Number=Sing"
|
||
|
elif i == 2:
|
||
|
assert doc[i].lemma_ == "the"
|
||
|
assert doc[i].morph_ == "Case=Nom|Number=Plur"
|
||
|
elif i == 3:
|
||
|
assert doc[i].lemma_ == "cat"
|
||
|
else:
|
||
|
assert doc[i].morph_ == ""
|
||
|
|
||
|
# raises an error when trying to modify a token outside of the match
|
||
|
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=2)
|
||
|
with pytest.raises(ValueError):
|
||
|
doc = nlp(text)
|
||
|
|
||
|
def test_attributeruler_serialize(nlp):
|
||
|
a = nlp.add_pipe("attribute_ruler")
|
||
|
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "the", "MORPH": "Case=Nom|Number=Plur"}, index=0)
|
||
|
a.add([[{"ORTH": "This"}, {"ORTH": "is"}]], {"LEMMA": "was", "MORPH": "Case=Nom|Number=Sing"}, index=1)
|
||
|
a.add([[{"ORTH": "a"}, {"ORTH": "test"}]], {"LEMMA": "cat"}, index=-1)
|
||
|
|
||
|
text = "This is a test."
|
||
|
attrs = ["ORTH", "LEMMA", "MORPH"]
|
||
|
doc = nlp(text)
|
||
|
|
||
|
# bytes roundtrip
|
||
|
a_reloaded = AttributeRuler(nlp.vocab).from_bytes(a.to_bytes())
|
||
|
assert a.to_bytes() == a_reloaded.to_bytes()
|
||
|
doc1 = a_reloaded(nlp.make_doc(text))
|
||
|
numpy.array_equal(doc.to_array(attrs), doc1.to_array(attrs))
|
||
|
|
||
|
# disk roundtrip
|
||
|
with make_tempdir() as tmp_dir:
|
||
|
nlp.to_disk(tmp_dir)
|
||
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||
|
doc2 = nlp2(text)
|
||
|
assert nlp2.get_pipe("attribute_ruler").to_bytes() == a.to_bytes()
|
||
|
assert numpy.array_equal(doc.to_array(attrs), doc2.to_array(attrs))
|