spaCy/spacy/gold/corpus_docbin.py

81 lines
2.6 KiB
Python
Raw Normal View History

2020-06-19 05:15:02 +03:00
import srsly
from pathlib import Path
2020-06-20 21:12:31 +03:00
import random
2020-06-19 05:15:02 +03:00
from .. import util
from .example import Example
from ..tokens import DocBin
2020-06-20 19:31:07 +03:00
class Corpus:
2020-06-19 05:15:02 +03:00
"""An annotated corpus, using the JSON file format. Manages
annotations for tagging, dependency parsing and NER.
DOCS: https://spacy.io/api/goldcorpus
"""
2020-06-20 21:12:31 +03:00
def __init__(self, train_loc, dev_loc, limit=0):
2020-06-19 05:15:02 +03:00
"""Create a GoldCorpus.
train (str / Path): File or directory of training data.
dev (str / Path): File or directory of development data.
RETURNS (GoldCorpus): The newly created object.
"""
self.train_loc = train_loc
self.dev_loc = dev_loc
@staticmethod
def walk_corpus(path):
path = util.ensure_path(path)
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
2020-06-20 19:31:07 +03:00
elif path.parts[-1].endswith(".spacy"):
2020-06-19 05:15:02 +03:00
locs.append(path)
return locs
2020-06-20 21:12:31 +03:00
def make_examples(self, nlp, reference_docs, **kwargs):
for reference in reference_docs:
predicted = nlp.make_doc(reference.text)
yield Example(predicted, reference)
def read_docbin(self, vocab, locs, limit=0):
2020-06-19 05:15:02 +03:00
""" Yield training examples as example dicts """
i = 0
for loc in locs:
loc = util.ensure_path(loc)
if loc.parts[-1].endswith(".spacy"):
with loc.open("rb") as file_:
doc_bin = DocBin().from_bytes(file_.read())
2020-06-20 21:12:31 +03:00
yield from doc_bin.get_docs(vocab)
2020-06-19 05:15:02 +03:00
2020-06-20 21:12:31 +03:00
def count_train(self, nlp):
2020-06-19 05:15:02 +03:00
"""Returns count of words in train examples"""
n = 0
i = 0
2020-06-20 21:12:31 +03:00
for example in self.train_dataset(nlp):
2020-06-19 05:15:02 +03:00
n += len(example.predicted)
if self.limit and i >= self.limit:
break
i += 1
return n
2020-06-20 21:12:31 +03:00
def train_dataset(self, nlp, **kwargs):
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc))
examples = list(self.make_examples(nlp, ref_docs, **kwargs))
2020-06-19 05:15:02 +03:00
random.shuffle(examples)
yield from examples
2020-06-20 21:12:31 +03:00
def dev_dataset(self, nlp):
ref_docs = self.read_docbin(nlp.vocab, self.walk_corpus(self.train_loc))
examples = self.make_examples(nlp, ref_docs, **kwargs)
2020-06-19 05:15:02 +03:00
yield from examples