mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 02:36:32 +03:00
334 lines
9.1 KiB
Plaintext
334 lines
9.1 KiB
Plaintext
|
//- 💫 DOCS > API > VECTORS
|
||
|
|
||
|
include ../_includes/_mixins
|
||
|
|
||
|
p
|
||
|
| Vectors data is kept in the #[code Vectors.data] attribute, which should
|
||
|
| be an instance of #[code numpy.ndarray] (for CPU vectors) or
|
||
|
| #[code cupy.ndarray] (for GPU vectors).
|
||
|
|
||
|
+h(2, "init") Vectors.__init__
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Create a new vector store. To keep the vector table empty, pass
|
||
|
| #[code data_or_width=0]. You can also create the vector table and add
|
||
|
| vectors one by one, or set the vector values directly on initialisation.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
from spacy.vectors import Vectors
|
||
|
from spacy.strings import StringStore
|
||
|
|
||
|
empty_vectors = Vectors(StringStore())
|
||
|
|
||
|
vectors = Vectors([u'cat'], 300)
|
||
|
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
|
||
|
|
||
|
vector_table = numpy.zeros((3, 300), dtype='f')
|
||
|
vectors = Vectors(StringStore(), vector_table)
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code strings]
|
||
|
+cell #[code StringStore] or list
|
||
|
+cell
|
||
|
| List of strings, or a #[+api("stringstore") #[code StringStore]]
|
||
|
| that maps strings to hash values, and vice versa.
|
||
|
|
||
|
+row
|
||
|
+cell #[code data_or_width]
|
||
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']] or int
|
||
|
+cell Vector data or number of dimensions.
|
||
|
|
||
|
+row("foot")
|
||
|
+cell returns
|
||
|
+cell #[code Vectors]
|
||
|
+cell The newly created object.
|
||
|
|
||
|
+h(2, "getitem") Vectors.__getitem__
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Get a vector by key. If key is a string, it is hashed to an integer ID
|
||
|
| using the #[code Vectors.strings] table. If the integer key is not found
|
||
|
| in the table, a #[code KeyError] is raised.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors = Vectors(StringStore(), 300)
|
||
|
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||
|
cat_vector = vectors[u'cat']
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code key]
|
||
|
+cell unicode / int
|
||
|
+cell The key to get the vector for.
|
||
|
|
||
|
+row
|
||
|
+cell returns
|
||
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||
|
+cell The vector for the key.
|
||
|
|
||
|
+h(2, "setitem") Vectors.__setitem__
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Set a vector for the given key. If key is a string, it is hashed to an
|
||
|
| integer ID using the #[code Vectors.strings] table.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors = Vectors(StringStore(), 300)
|
||
|
vectors[u'cat'] = numpy.random.uniform(-1, 1, (300,))
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code key]
|
||
|
+cell unicode / int
|
||
|
+cell The key to set the vector for.
|
||
|
|
||
|
+row
|
||
|
+cell #[code vector]
|
||
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||
|
+cell The vector to set.
|
||
|
|
||
|
+h(2, "iter") Vectors.__iter__
|
||
|
+tag method
|
||
|
|
||
|
p Yield vectors from the table.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vector_table = numpy.zeros((3, 300), dtype='f')
|
||
|
vectors = Vectors(StringStore(), vector_table)
|
||
|
for vector in vectors:
|
||
|
print(vector)
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row("foot")
|
||
|
+cell yields
|
||
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||
|
+cell A vector from the table.
|
||
|
|
||
|
+h(2, "len") Vectors.__len__
|
||
|
+tag method
|
||
|
|
||
|
p Return the number of vectors that have been assigned.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vector_table = numpy.zeros((3, 300), dtype='f')
|
||
|
vectors = Vectors(StringStore(), vector_table)
|
||
|
assert len(vectors) == 3
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row("foot")
|
||
|
+cell returns
|
||
|
+cell int
|
||
|
+cell The number of vectors in the data.
|
||
|
|
||
|
+h(2, "contains") Vectors.__contains__
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Check whether a key has a vector entry in the table. If key is a string,
|
||
|
| it is hashed to an integer ID using the #[code Vectors.strings] table.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors = Vectors(StringStore(), 300)
|
||
|
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||
|
assert u'cat' in vectors
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code key]
|
||
|
+cell unicode / int
|
||
|
+cell The key to check.
|
||
|
|
||
|
+row("foot")
|
||
|
+cell returns
|
||
|
+cell bool
|
||
|
+cell Whether the key has a vector entry.
|
||
|
|
||
|
+h(2, "add") Vectors.add
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Add a key to the table, optionally setting a vector value as well. If
|
||
|
| key is a string, it is hashed to an integer ID using the
|
||
|
| #[code Vectors.strings] table.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors = Vectors(StringStore(), 300)
|
||
|
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code key]
|
||
|
+cell unicode / int
|
||
|
+cell The key to add.
|
||
|
|
||
|
+row
|
||
|
+cell #[code vector]
|
||
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
||
|
+cell An optional vector to add.
|
||
|
|
||
|
+h(2, "items") Vectors.items
|
||
|
+tag method
|
||
|
|
||
|
p Iterate over #[code (string key, vector)] pairs, in order.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors = Vectors(StringStore(), 300)
|
||
|
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||
|
for key, vector in vectors.items():
|
||
|
print(key, vector)
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row("foot")
|
||
|
+cell yields
|
||
|
+cell tuple
|
||
|
+cell #[code (string key, vector)] pairs, in order.
|
||
|
|
||
|
+h(2, "shape") Vectors.shape
|
||
|
+tag property
|
||
|
|
||
|
p
|
||
|
| Get #[code (rows, dims)] tuples of number of rows and number of
|
||
|
| dimensions in the vector table.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors = Vectors(StringStore(), 300)
|
||
|
vectors.add(u'cat', numpy.random.uniform(-1, 1, (300,)))
|
||
|
rows, dims = vectors.shape
|
||
|
assert rows == 1
|
||
|
assert dims == 300
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row("foot")
|
||
|
+cell returns
|
||
|
+cell tuple
|
||
|
+cell #[code (rows, dims)] pairs.
|
||
|
|
||
|
+h(2, "from_glove") Vectors.from_glove
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Load #[+a("https://nlp.stanford.edu/projects/glove/") GloVe] vectors from
|
||
|
| a directory. Assumes binary format, that the vocab is in a
|
||
|
| #[code vocab.txt], and that vectors are named
|
||
|
| #[code vectors.{size}.[fd].bin], e.g. #[code vectors.128.f.bin] for 128d
|
||
|
| float32 vectors, #[code vectors.300.d.bin] for 300d float64 (double)
|
||
|
| vectors, etc. By default GloVe outputs 64-bit vectors.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code path]
|
||
|
+cell unicode / #[code Path]
|
||
|
+cell The path to load the GloVe vectors from.
|
||
|
|
||
|
+h(2, "to_disk") Vectors.to_disk
|
||
|
+tag method
|
||
|
|
||
|
p Save the current state to a directory.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors.to_disk('/path/to/vectors')
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code path]
|
||
|
+cell unicode or #[code Path]
|
||
|
+cell
|
||
|
| A path to a directory, which will be created if it doesn't exist.
|
||
|
| Paths may be either strings or #[code Path]-like objects.
|
||
|
|
||
|
+h(2, "from_disk") Vectors.from_disk
|
||
|
+tag method
|
||
|
|
||
|
p Loads state from a directory. Modifies the object in place and returns it.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors = Vectors(StringStore())
|
||
|
vectors.from_disk('/path/to/vectors')
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code path]
|
||
|
+cell unicode or #[code Path]
|
||
|
+cell
|
||
|
| A path to a directory. Paths may be either strings or
|
||
|
| #[code Path]-like objects.
|
||
|
|
||
|
+row("foot")
|
||
|
+cell returns
|
||
|
+cell #[code Vectors]
|
||
|
+cell The modified #[code Vectors] object.
|
||
|
|
||
|
+h(2, "to_bytes") Vectors.to_bytes
|
||
|
+tag method
|
||
|
|
||
|
p Serialize the current state to a binary string.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
vectors_bytes = vectors.to_bytes()
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code **exclude]
|
||
|
+cell -
|
||
|
+cell Named attributes to prevent from being serialized.
|
||
|
|
||
|
+row("foot")
|
||
|
+cell returns
|
||
|
+cell bytes
|
||
|
+cell The serialized form of the #[code Vectors] object.
|
||
|
|
||
|
+h(2, "from_bytes") Vectors.from_bytes
|
||
|
+tag method
|
||
|
|
||
|
p Load state from a binary string.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
fron spacy.vectors import Vectors
|
||
|
vectors_bytes = vectors.to_bytes()
|
||
|
new_vectors = Vectors(StringStore())
|
||
|
new_vectors.from_bytes(vectors_bytes)
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code bytes_data]
|
||
|
+cell bytes
|
||
|
+cell The data to load from.
|
||
|
|
||
|
+row
|
||
|
+cell #[code **exclude]
|
||
|
+cell -
|
||
|
+cell Named attributes to prevent from being loaded.
|
||
|
|
||
|
+row("foot")
|
||
|
+cell returns
|
||
|
+cell #[code Vectors]
|
||
|
+cell The #[code Vectors] object.
|
||
|
|
||
|
+h(2, "attributes") Attributes
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code data]
|
||
|
+cell #[code numpy.ndarray] / #[code cupy.ndarray]
|
||
|
+cell
|
||
|
| Stored vectors data. #[code numpy] is used for CPU vectors,
|
||
|
| #[code cupy] for GPU vectors.
|
||
|
|
||
|
+row
|
||
|
+cell #[code key2row]
|
||
|
+cell dict
|
||
|
+cell
|
||
|
| Dictionary mapping word hashes to rows in the
|
||
|
| #[code Vectors.data] table.
|
||
|
|
||
|
+row
|
||
|
+cell #[code keys]
|
||
|
+cell #[code numpy.ndarray]
|
||
|
+cell
|
||
|
| Array keeping the keys in order, such that
|
||
|
| #[code keys[vectors.key2row[key]] == key]
|