2020-02-27 20:42:27 +03:00
|
|
|
from thinc.api import chain, clone, concatenate, with_array, uniqued
|
|
|
|
from thinc.api import Model, noop, with_padded, Maxout, expand_window
|
|
|
|
from thinc.api import HashEmbed, StaticVectors, PyTorchLSTM
|
|
|
|
from thinc.api import residual, LayerNorm, FeatureExtractor, Mish
|
|
|
|
|
|
|
|
from ... import util
|
|
|
|
from ...util import registry, make_layer
|
|
|
|
from ...ml import _character_embed
|
|
|
|
from ...pipeline.tok2vec import Tok2VecListener
|
|
|
|
from ...attrs import ID, ORTH, NORM, PREFIX, SUFFIX, SHAPE
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.Tok2VecTensors.v1")
|
|
|
|
def tok2vec_tensors_v1(width):
|
|
|
|
tok2vec = Tok2VecListener("tok2vec", width=width)
|
|
|
|
return tok2vec
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.VocabVectors.v1")
|
|
|
|
def get_vocab_vectors(name):
|
|
|
|
nlp = util.load_model(name)
|
|
|
|
return nlp.vocab.vectors
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.Tok2Vec.v1")
|
|
|
|
def Tok2Vec(config):
|
|
|
|
doc2feats = make_layer(config["@doc2feats"])
|
|
|
|
embed = make_layer(config["@embed"])
|
|
|
|
encode = make_layer(config["@encode"])
|
|
|
|
field_size = 0
|
|
|
|
if encode.has_attr("receptive_field"):
|
|
|
|
field_size = encode.attrs["receptive_field"]
|
|
|
|
tok2vec = chain(doc2feats, with_array(chain(embed, encode), pad=field_size))
|
|
|
|
tok2vec.attrs["cfg"] = config
|
|
|
|
tok2vec.set_dim("nO", encode.get_dim("nO"))
|
|
|
|
tok2vec.set_ref("embed", embed)
|
|
|
|
tok2vec.set_ref("encode", encode)
|
|
|
|
return tok2vec
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.Doc2Feats.v1")
|
|
|
|
def Doc2Feats(config):
|
|
|
|
columns = config["columns"]
|
|
|
|
return FeatureExtractor(columns)
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.HashEmbedCNN.v1")
|
|
|
|
def hash_embed_cnn(
|
|
|
|
pretrained_vectors,
|
|
|
|
width,
|
|
|
|
depth,
|
|
|
|
embed_size,
|
|
|
|
maxout_pieces,
|
|
|
|
window_size,
|
|
|
|
subword_features,
|
|
|
|
):
|
|
|
|
# Does not use character embeddings: set to False by default
|
|
|
|
return build_Tok2Vec_model(
|
|
|
|
width=width,
|
|
|
|
embed_size=embed_size,
|
|
|
|
pretrained_vectors=pretrained_vectors,
|
|
|
|
conv_depth=depth,
|
|
|
|
bilstm_depth=0,
|
|
|
|
maxout_pieces=maxout_pieces,
|
|
|
|
window_size=window_size,
|
|
|
|
subword_features=subword_features,
|
|
|
|
char_embed=False,
|
|
|
|
nM=0,
|
|
|
|
nC=0,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.HashCharEmbedCNN.v1")
|
|
|
|
def hash_charembed_cnn(
|
|
|
|
pretrained_vectors,
|
|
|
|
width,
|
|
|
|
depth,
|
|
|
|
embed_size,
|
|
|
|
maxout_pieces,
|
|
|
|
window_size,
|
|
|
|
subword_features,
|
|
|
|
nM=0,
|
|
|
|
nC=0,
|
|
|
|
):
|
|
|
|
# Allows using character embeddings by setting nC, nM and char_embed=True
|
|
|
|
return build_Tok2Vec_model(
|
|
|
|
width=width,
|
|
|
|
embed_size=embed_size,
|
|
|
|
pretrained_vectors=pretrained_vectors,
|
|
|
|
conv_depth=depth,
|
|
|
|
bilstm_depth=0,
|
|
|
|
maxout_pieces=maxout_pieces,
|
|
|
|
window_size=window_size,
|
|
|
|
subword_features=subword_features,
|
|
|
|
char_embed=True,
|
|
|
|
nM=nM,
|
|
|
|
nC=nC,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.HashEmbedBiLSTM.v1")
|
|
|
|
def hash_embed_bilstm_v1(
|
|
|
|
pretrained_vectors, width, depth, embed_size, subword_features
|
|
|
|
):
|
|
|
|
# Does not use character embeddings: set to False by default
|
|
|
|
return build_Tok2Vec_model(
|
|
|
|
width=width,
|
|
|
|
embed_size=embed_size,
|
|
|
|
pretrained_vectors=pretrained_vectors,
|
|
|
|
bilstm_depth=depth,
|
|
|
|
conv_depth=0,
|
|
|
|
maxout_pieces=0,
|
|
|
|
window_size=1,
|
|
|
|
subword_features=subword_features,
|
|
|
|
char_embed=False,
|
|
|
|
nM=0,
|
|
|
|
nC=0,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.HashCharEmbedBiLSTM.v1")
|
2020-02-28 13:57:41 +03:00
|
|
|
def hash_char_embed_bilstm_v1(
|
2020-02-27 20:42:27 +03:00
|
|
|
pretrained_vectors, width, depth, embed_size, subword_features, nM=0, nC=0
|
|
|
|
):
|
|
|
|
# Allows using character embeddings by setting nC, nM and char_embed=True
|
|
|
|
return build_Tok2Vec_model(
|
|
|
|
width=width,
|
|
|
|
embed_size=embed_size,
|
|
|
|
pretrained_vectors=pretrained_vectors,
|
|
|
|
bilstm_depth=depth,
|
|
|
|
conv_depth=0,
|
|
|
|
maxout_pieces=0,
|
|
|
|
window_size=1,
|
|
|
|
subword_features=subword_features,
|
|
|
|
char_embed=True,
|
|
|
|
nM=nM,
|
|
|
|
nC=nC,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.MultiHashEmbed.v1")
|
|
|
|
def MultiHashEmbed(config):
|
|
|
|
# For backwards compatibility with models before the architecture registry,
|
|
|
|
# we have to be careful to get exactly the same model structure. One subtle
|
|
|
|
# trick is that when we define concatenation with the operator, the operator
|
|
|
|
# is actually binary associative. So when we write (a | b | c), we're actually
|
|
|
|
# getting concatenate(concatenate(a, b), c). That's why the implementation
|
|
|
|
# is a bit ugly here.
|
|
|
|
cols = config["columns"]
|
|
|
|
width = config["width"]
|
|
|
|
rows = config["rows"]
|
|
|
|
|
|
|
|
norm = HashEmbed(width, rows, column=cols.index("NORM"))
|
|
|
|
if config["use_subwords"]:
|
|
|
|
prefix = HashEmbed(width, rows // 2, column=cols.index("PREFIX"))
|
|
|
|
suffix = HashEmbed(width, rows // 2, column=cols.index("SUFFIX"))
|
|
|
|
shape = HashEmbed(width, rows // 2, column=cols.index("SHAPE"))
|
|
|
|
if config.get("@pretrained_vectors"):
|
|
|
|
glove = make_layer(config["@pretrained_vectors"])
|
|
|
|
mix = make_layer(config["@mix"])
|
|
|
|
|
|
|
|
with Model.define_operators({">>": chain, "|": concatenate}):
|
|
|
|
if config["use_subwords"] and config["@pretrained_vectors"]:
|
|
|
|
mix._layers[0].set_dim("nI", width * 5)
|
|
|
|
layer = uniqued(
|
|
|
|
(glove | norm | prefix | suffix | shape) >> mix,
|
|
|
|
column=cols.index("ORTH"),
|
|
|
|
)
|
|
|
|
elif config["use_subwords"]:
|
|
|
|
mix._layers[0].set_dim("nI", width * 4)
|
|
|
|
layer = uniqued(
|
|
|
|
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
|
|
|
|
)
|
|
|
|
elif config["@pretrained_vectors"]:
|
|
|
|
mix._layers[0].set_dim("nI", width * 2)
|
|
|
|
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"))
|
|
|
|
else:
|
|
|
|
layer = norm
|
|
|
|
layer.attrs["cfg"] = config
|
|
|
|
return layer
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.CharacterEmbed.v1")
|
|
|
|
def CharacterEmbed(config):
|
|
|
|
width = config["width"]
|
|
|
|
chars = config["chars"]
|
|
|
|
|
|
|
|
chr_embed = _character_embed.CharacterEmbed(nM=width, nC=chars)
|
|
|
|
other_tables = make_layer(config["@embed_features"])
|
|
|
|
mix = make_layer(config["@mix"])
|
|
|
|
|
|
|
|
model = chain(concatenate(chr_embed, other_tables), mix)
|
|
|
|
model.attrs["cfg"] = config
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
|
|
|
|
def MaxoutWindowEncoder(config):
|
|
|
|
nO = config["width"]
|
|
|
|
nW = config["window_size"]
|
|
|
|
nP = config["pieces"]
|
|
|
|
depth = config["depth"]
|
|
|
|
|
|
|
|
cnn = (
|
|
|
|
expand_window(window_size=nW),
|
|
|
|
Maxout(nO=nO, nI=nO * ((nW * 2) + 1), nP=nP, dropout=0.0, normalize=True),
|
|
|
|
)
|
|
|
|
model = clone(residual(cnn), depth)
|
|
|
|
model.set_dim("nO", nO)
|
|
|
|
model.attrs["receptive_field"] = nW * depth
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.MishWindowEncoder.v1")
|
|
|
|
def MishWindowEncoder(config):
|
|
|
|
nO = config["width"]
|
|
|
|
nW = config["window_size"]
|
|
|
|
depth = config["depth"]
|
|
|
|
|
|
|
|
cnn = chain(
|
|
|
|
expand_window(window_size=nW),
|
|
|
|
Mish(nO=nO, nI=nO * ((nW * 2) + 1)),
|
|
|
|
LayerNorm(nO),
|
|
|
|
)
|
|
|
|
model = clone(residual(cnn), depth)
|
|
|
|
model.set_dim("nO", nO)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
|
|
|
|
def TorchBiLSTMEncoder(config):
|
|
|
|
import torch.nn
|
|
|
|
|
|
|
|
# TODO FIX
|
|
|
|
from thinc.api import PyTorchRNNWrapper
|
|
|
|
|
|
|
|
width = config["width"]
|
|
|
|
depth = config["depth"]
|
|
|
|
if depth == 0:
|
|
|
|
return noop()
|
|
|
|
return with_padded(
|
|
|
|
PyTorchRNNWrapper(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: update
|
|
|
|
_EXAMPLE_CONFIG = {
|
|
|
|
"@doc2feats": {
|
|
|
|
"arch": "Doc2Feats",
|
|
|
|
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
|
|
|
|
},
|
|
|
|
"@embed": {
|
|
|
|
"arch": "spacy.MultiHashEmbed.v1",
|
|
|
|
"config": {
|
|
|
|
"width": 96,
|
|
|
|
"rows": 2000,
|
|
|
|
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
|
|
|
|
"use_subwords": True,
|
|
|
|
"@pretrained_vectors": {
|
|
|
|
"arch": "TransformedStaticVectors",
|
|
|
|
"config": {
|
|
|
|
"vectors_name": "en_vectors_web_lg.vectors",
|
|
|
|
"width": 96,
|
|
|
|
"column": 0,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
"@mix": {
|
|
|
|
"arch": "LayerNormalizedMaxout",
|
|
|
|
"config": {"width": 96, "pieces": 3},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
},
|
|
|
|
"@encode": {
|
|
|
|
"arch": "MaxoutWindowEncode",
|
|
|
|
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def build_Tok2Vec_model(
|
|
|
|
width,
|
|
|
|
embed_size,
|
|
|
|
pretrained_vectors,
|
|
|
|
window_size,
|
|
|
|
maxout_pieces,
|
|
|
|
subword_features,
|
|
|
|
char_embed,
|
|
|
|
nM,
|
|
|
|
nC,
|
|
|
|
conv_depth,
|
|
|
|
bilstm_depth,
|
|
|
|
) -> Model:
|
|
|
|
if char_embed:
|
|
|
|
subword_features = False
|
|
|
|
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
|
|
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
|
|
|
norm = HashEmbed(nO=width, nV=embed_size, column=cols.index(NORM))
|
|
|
|
if subword_features:
|
|
|
|
prefix = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(PREFIX))
|
|
|
|
suffix = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(SUFFIX))
|
|
|
|
shape = HashEmbed(nO=width, nV=embed_size // 2, column=cols.index(SHAPE))
|
|
|
|
else:
|
|
|
|
prefix, suffix, shape = (None, None, None)
|
|
|
|
if pretrained_vectors is not None:
|
|
|
|
glove = StaticVectors(
|
|
|
|
vectors=pretrained_vectors.data,
|
|
|
|
nO=width,
|
|
|
|
column=cols.index(ID),
|
|
|
|
dropout=0.0,
|
|
|
|
)
|
|
|
|
|
|
|
|
if subword_features:
|
|
|
|
columns = 5
|
|
|
|
embed = uniqued(
|
|
|
|
(glove | norm | prefix | suffix | shape)
|
|
|
|
>> Maxout(
|
|
|
|
nO=width,
|
|
|
|
nI=width * columns,
|
|
|
|
nP=maxout_pieces,
|
|
|
|
dropout=0.0,
|
|
|
|
normalize=True,
|
|
|
|
),
|
|
|
|
column=cols.index(ORTH),
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
columns = 2
|
|
|
|
embed = uniqued(
|
|
|
|
(glove | norm)
|
|
|
|
>> Maxout(
|
|
|
|
nO=width,
|
|
|
|
nI=width * columns,
|
|
|
|
nP=maxout_pieces,
|
|
|
|
dropout=0.0,
|
|
|
|
normalize=True,
|
|
|
|
),
|
|
|
|
column=cols.index(ORTH),
|
|
|
|
)
|
|
|
|
elif subword_features:
|
|
|
|
columns = 4
|
|
|
|
embed = uniqued(
|
|
|
|
concatenate(norm, prefix, suffix, shape)
|
|
|
|
>> Maxout(
|
|
|
|
nO=width,
|
|
|
|
nI=width * columns,
|
|
|
|
nP=maxout_pieces,
|
|
|
|
dropout=0.0,
|
|
|
|
normalize=True,
|
|
|
|
),
|
|
|
|
column=cols.index(ORTH),
|
|
|
|
)
|
|
|
|
elif char_embed:
|
|
|
|
embed = _character_embed.CharacterEmbed(nM=nM, nC=nC) | FeatureExtractor(
|
|
|
|
cols
|
|
|
|
) >> with_array(norm)
|
|
|
|
reduce_dimensions = Maxout(
|
|
|
|
nO=width,
|
|
|
|
nI=nM * nC + width,
|
|
|
|
nP=maxout_pieces,
|
|
|
|
dropout=0.0,
|
|
|
|
normalize=True,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
embed = norm
|
|
|
|
|
|
|
|
convolution = residual(
|
|
|
|
expand_window(window_size=window_size)
|
|
|
|
>> Maxout(
|
|
|
|
nO=width,
|
|
|
|
nI=width * ((window_size * 2) + 1),
|
|
|
|
nP=maxout_pieces,
|
|
|
|
dropout=0.0,
|
|
|
|
normalize=True,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
if char_embed:
|
|
|
|
tok2vec = embed >> with_array(
|
|
|
|
reduce_dimensions >> convolution ** conv_depth, pad=conv_depth
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
tok2vec = FeatureExtractor(cols) >> with_array(
|
|
|
|
embed >> convolution ** conv_depth, pad=conv_depth
|
|
|
|
)
|
|
|
|
|
|
|
|
if bilstm_depth >= 1:
|
|
|
|
tok2vec = tok2vec >> PyTorchLSTM(
|
|
|
|
nO=width, nI=width, depth=bilstm_depth, bi=True
|
|
|
|
)
|
|
|
|
tok2vec.set_dim("nO", width)
|
|
|
|
tok2vec.set_ref("embed", embed)
|
|
|
|
return tok2vec
|