mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
1489 lines
86 KiB
Plaintext
1489 lines
86 KiB
Plaintext
|
---
|
||
|
title: Large Language Models
|
||
|
teaser: Integrating LLMs into structured NLP pipelines
|
||
|
menu:
|
||
|
- ['Config', 'config']
|
||
|
- ['Tasks', 'tasks']
|
||
|
- ['Models', 'models']
|
||
|
- ['Cache', 'cache']
|
||
|
- ['Various Functions', 'various-functions']
|
||
|
---
|
||
|
|
||
|
[The spacy-llm package](https://github.com/explosion/spacy-llm) integrates Large
|
||
|
Language Models (LLMs) into spaCy, featuring a modular system for **fast
|
||
|
prototyping** and **prompting**, and turning unstructured responses into
|
||
|
**robust outputs** for various NLP tasks, **no training data** required.
|
||
|
|
||
|
## Config {id="config"}
|
||
|
|
||
|
`spacy-llm` exposes a `llm` factory that accepts the following configuration
|
||
|
options:
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ---------------- | ------------------------------------------------------------------------------------------------------- |
|
||
|
| `task` | An LLMTask can generate prompts and parse LLM responses. See [docs](#tasks). ~~Optional[LLMTask]~~ |
|
||
|
| `model` | Callable querying a specific LLM API. See [docs](#models). ~~Callable[[Iterable[Any]], Iterable[Any]]~~ |
|
||
|
| `cache` | Cache to use for caching prompts and responses per doc (batch). See [docs](#cache). ~~Cache~~ |
|
||
|
| `save_io` | Whether to save prompts/responses within `Doc.user_data["llm_io"]`. ~~bool~~ |
|
||
|
| `validate_types` | Whether to check if signatures of configured model and task are consistent. ~~bool~~ |
|
||
|
|
||
|
An `llm` component is defined by two main settings:
|
||
|
|
||
|
- A [**task**](#tasks), defining the prompt to send to the LLM as well as the
|
||
|
functionality to parse the resulting response back into structured fields on
|
||
|
the [Doc](/api/doc) objects.
|
||
|
- A [**model**](#models) defining the model and how to connect to it. Note that
|
||
|
`spacy-llm` supports both access to external APIs (such as OpenAI) as well as
|
||
|
access to self-hosted open-source LLMs (such as using Dolly through Hugging
|
||
|
Face).
|
||
|
|
||
|
Moreover, `spacy-llm` exposes a customizable [**caching**](#cache) functionality
|
||
|
to avoid running the same document through an LLM service (be it local or
|
||
|
through a REST API) more than once.
|
||
|
|
||
|
Finally, you can choose to save a stringified version of LLM prompts/responses
|
||
|
within the `Doc.user_data["llm_io"]` attribute by setting `save_io` to `True`.
|
||
|
`Doc.user_data["llm_io"]` is a dictionary containing one entry for every LLM
|
||
|
component within the `nlp` pipeline. Each entry is itself a dictionary, with two
|
||
|
keys: `prompt` and `response`.
|
||
|
|
||
|
A note on `validate_types`: by default, `spacy-llm` checks whether the
|
||
|
signatures of the `model` and `task` callables are consistent with each other
|
||
|
and emits a warning if they don't. `validate_types` can be set to `False` if you
|
||
|
want to disable this behavior.
|
||
|
|
||
|
### Tasks {id="tasks"}
|
||
|
|
||
|
A _task_ defines an NLP problem or question, that will be sent to the LLM via a
|
||
|
prompt. Further, the task defines how to parse the LLM's responses back into
|
||
|
structured information. All tasks are registered in the `llm_tasks` registry.
|
||
|
|
||
|
#### task.generate_prompts {id="task-generate-prompts"}
|
||
|
|
||
|
Takes a collection of documents, and returns a collection of "prompts", which
|
||
|
can be of type `Any`. Often, prompts are of type `str` - but this is not
|
||
|
enforced to allow for maximum flexibility in the framework.
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ---------------------------------------- |
|
||
|
| `docs` | The input documents. ~~Iterable[Doc]~~ |
|
||
|
| **RETURNS** | The generated prompts. ~~Iterable[Any]~~ |
|
||
|
|
||
|
#### task.parse_responses {id="task-parse-responses"}
|
||
|
|
||
|
Takes a collection of LLM responses and the original documents, parses the
|
||
|
responses into structured information, and sets the annotations on the
|
||
|
documents. The `parse_responses` function is free to set the annotations in any
|
||
|
way, including `Doc` fields like `ents`, `spans` or `cats`, or using custom
|
||
|
defined fields.
|
||
|
|
||
|
The `responses` are of type `Iterable[Any]`, though they will often be `str`
|
||
|
objects. This depends on the return type of the [model](#models).
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------ |
|
||
|
| `docs` | The input documents. ~~Iterable[Doc]~~ |
|
||
|
| `responses` | The generated prompts. ~~Iterable[Any]~~ |
|
||
|
| **RETURNS** | The annotated documents. ~~Iterable[Doc]~~ |
|
||
|
|
||
|
#### spacy.Summarization.v1 {id="summarization-v1"}
|
||
|
|
||
|
The `spacy.Summarization.v1` task supports both zero-shot and few-shot
|
||
|
prompting.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.Summarization.v1"
|
||
|
> examples = null
|
||
|
> max_n_words = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [summarization.jinja](./spacy_llm/tasks/templates/summarization.jinja). ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `max_n_words` | Maximum number of words to be used in summary. Note that this should not expected to work exactly. Defaults to `None`. ~~Optional[int]~~ |
|
||
|
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `summary`. ~~str~~ |
|
||
|
|
||
|
The summarization task prompts the model for a concise summary of the provided
|
||
|
text. It optionally allows to limit the response to a certain number of tokens -
|
||
|
note that this requirement will be included in the prompt, but the task doesn't
|
||
|
perform a hard cut-off. It's hence possible that your summary exceeds
|
||
|
`max_n_words`.
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```yaml
|
||
|
- text: >
|
||
|
The United Nations, referred to informally as the UN, is an
|
||
|
intergovernmental organization whose stated purposes are to maintain
|
||
|
international peace and security, develop friendly relations among nations,
|
||
|
achieve international cooperation, and serve as a centre for harmonizing the
|
||
|
actions of nations. It is the world's largest international organization.
|
||
|
The UN is headquartered on international territory in New York City, and the
|
||
|
organization has other offices in Geneva, Nairobi, Vienna, and The Hague,
|
||
|
where the International Court of Justice is headquartered.\n\n The UN was
|
||
|
established after World War II with the aim of preventing future world wars,
|
||
|
and succeeded the League of Nations, which was characterized as
|
||
|
ineffective.
|
||
|
summary:
|
||
|
'The UN is an international organization that promotes global peace,
|
||
|
cooperation, and harmony. Established after WWII, its purpose is to prevent
|
||
|
future world wars.'
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.Summarization.v1"
|
||
|
max_n_words = 20
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "summarization_examples.yml"
|
||
|
```
|
||
|
|
||
|
#### spacy.NER.v2 {id="ner-v2"}
|
||
|
|
||
|
The built-in NER task supports both zero-shot and few-shot prompting. This
|
||
|
version also supports explicitly defining the provided labels with custom
|
||
|
descriptions.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.NER.v2"
|
||
|
> labels = ["PERSON", "ORGANISATION", "LOCATION"]
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [ner.v2.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/ner.v2.jinja). ~~str~~ |
|
||
|
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||
|
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||
|
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
|
||
|
|
||
|
The NER task implementation doesn't currently ask the LLM for specific offsets,
|
||
|
but simply expects a list of strings that represent the enties in the document.
|
||
|
This means that a form of string matching is required. This can be configured by
|
||
|
the following parameters:
|
||
|
|
||
|
- The `single_match` parameter is typically set to `False` to allow for multiple
|
||
|
matches. For instance, the response from the LLM might only mention the entity
|
||
|
"Paris" once, but you'd still want to mark it every time it occurs in the
|
||
|
document.
|
||
|
- The case-sensitive matching is typically set to `False` to be robust against
|
||
|
case variances in the LLM's output.
|
||
|
- The `alignment_mode` argument is used to match entities as returned by the LLM
|
||
|
to the tokens from the original `Doc` - specifically it's used as argument in
|
||
|
the call to [`doc.char_span()`](/api/doc#char_span). The `"strict"` mode will
|
||
|
only keep spans that strictly adhere to the given token boundaries.
|
||
|
`"contract"` will only keep those tokens that are fully within the given
|
||
|
range, e.g. reducing `"New Y"` to `"New"`. Finally, `"expand"` will expand the
|
||
|
span to the next token boundaries, e.g. expanding `"New Y"` out to
|
||
|
`"New York"`.
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```yaml
|
||
|
- text: Jack and Jill went up the hill.
|
||
|
entities:
|
||
|
PERSON:
|
||
|
- Jack
|
||
|
- Jill
|
||
|
LOCATION:
|
||
|
- hill
|
||
|
- text: Jack fell down and broke his crown.
|
||
|
entities:
|
||
|
PERSON:
|
||
|
- Jack
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.NER.v2"
|
||
|
labels = PERSON,ORGANISATION,LOCATION
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "ner_examples.yml"
|
||
|
```
|
||
|
|
||
|
> Label descriptions can also be used with explicit examples to give as much
|
||
|
> info to the LLM model as possible.
|
||
|
|
||
|
You can also write definitions for each label and provide them via the
|
||
|
`label_definitions` argument. This lets you tell the LLM exactly what you're
|
||
|
looking for rather than relying on the LLM to interpret its task given just the
|
||
|
label name. Label descriptions are freeform so you can write whatever you want
|
||
|
here, but through some experiments a brief description along with some examples
|
||
|
and counter examples seems to work quite well.
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.NER.v2"
|
||
|
labels = PERSON,SPORTS_TEAM
|
||
|
[components.llm.task.label_definitions]
|
||
|
PERSON = "Extract any named individual in the text."
|
||
|
SPORTS_TEAM = "Extract the names of any professional sports team. e.g. Golden State Warriors, LA Lakers, Man City, Real Madrid"
|
||
|
```
|
||
|
|
||
|
#### spacy.NER.v1 {id="ner-v1"}
|
||
|
|
||
|
The original version of the built-in NER task supports both zero-shot and
|
||
|
few-shot prompting.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.NER.v1"
|
||
|
> labels = PERSON,ORGANISATION,LOCATION
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||
|
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||
|
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
|
||
|
|
||
|
The NER task implementation doesn't currently ask the LLM for specific offsets,
|
||
|
but simply expects a list of strings that represent the enties in the document.
|
||
|
This means that a form of string matching is required. This can be configured by
|
||
|
the following parameters:
|
||
|
|
||
|
- The `single_match` parameter is typically set to `False` to allow for multiple
|
||
|
matches. For instance, the response from the LLM might only mention the entity
|
||
|
"Paris" once, but you'd still want to mark it every time it occurs in the
|
||
|
document.
|
||
|
- The case-sensitive matching is typically set to `False` to be robust against
|
||
|
case variances in the LLM's output.
|
||
|
- The `alignment_mode` argument is used to match entities as returned by the LLM
|
||
|
to the tokens from the original `Doc` - specifically it's used as argument in
|
||
|
the call to [`doc.char_span()`](/api/doc#char_span). The `"strict"` mode will
|
||
|
only keep spans that strictly adhere to the given token boundaries.
|
||
|
`"contract"` will only keep those tokens that are fully within the given
|
||
|
range, e.g. reducing `"New Y"` to `"New"`. Finally, `"expand"` will expand the
|
||
|
span to the next token boundaries, e.g. expanding `"New Y"` out to
|
||
|
`"New York"`.
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```yaml
|
||
|
- text: Jack and Jill went up the hill.
|
||
|
entities:
|
||
|
PERSON:
|
||
|
- Jack
|
||
|
- Jill
|
||
|
LOCATION:
|
||
|
- hill
|
||
|
- text: Jack fell down and broke his crown.
|
||
|
entities:
|
||
|
PERSON:
|
||
|
- Jack
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.NER.v1"
|
||
|
labels = PERSON,ORGANISATION,LOCATION
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "ner_examples.yml"
|
||
|
```
|
||
|
|
||
|
#### spacy.SpanCat.v2 {id="spancat-v2"}
|
||
|
|
||
|
The built-in SpanCat task is a simple adaptation of the NER task to support
|
||
|
overlapping entities and store its annotations in `doc.spans`.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.SpanCat.v2"
|
||
|
> labels = ["PERSON", "ORGANISATION", "LOCATION"]
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`spancat.v2.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/spancat.v2.jinja). ~~str~~ |
|
||
|
| `label_definitions` | Optional dict mapping a label to a description of that label. These descriptions are added to the prompt to help instruct the LLM on what to extract. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||
|
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||
|
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||
|
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
|
||
|
|
||
|
Except for the `spans_key` parameter, the SpanCat task reuses the configuration
|
||
|
from the NER task. Refer to [its documentation](#ner-v2) for more insight.
|
||
|
|
||
|
#### spacy.SpanCat.v1 {id="spancat-v1"}
|
||
|
|
||
|
The original version of the built-in SpanCat task is a simple adaptation of the
|
||
|
v1 NER task to support overlapping entities and store its annotations in
|
||
|
`doc.spans`.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.SpanCat.v1"
|
||
|
> labels = PERSON,ORGANISATION,LOCATION
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||
|
| `spans_key` | Key of the `Doc.spans` dict to save the spans under. Defaults to `"sc"`. ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, defaults to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `alignment_mode` | Alignment mode in case the LLM returns entities that do not align with token boundaries. Options are `"strict"`, `"contract"` or `"expand"`. Defaults to `"contract"`. ~~str~~ |
|
||
|
| `case_sensitive_matching` | Whether to search without case sensitivity. Defaults to `False`. ~~bool~~ |
|
||
|
| `single_match` | Whether to match an entity in the LLM's response only once (the first hit) or multiple times. Defaults to `False`. ~~bool~~ |
|
||
|
|
||
|
Except for the `spans_key` parameter, the SpanCat task reuses the configuration
|
||
|
from the NER task. Refer to [its documentation](#ner-v1) for more insight.
|
||
|
|
||
|
#### spacy.TextCat.v3 {id="textcat-v3"}
|
||
|
|
||
|
Version 3 (the most recent) of the built-in TextCat task supports both zero-shot
|
||
|
and few-shot prompting. It allows setting definitions of labels. Those
|
||
|
definitions are included in the prompt.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.TextCat.v3"
|
||
|
> labels = ["COMPLIMENT", "INSULT"]
|
||
|
> label_definitions = {
|
||
|
> "COMPLIMENT": "a polite expression of praise or admiration.",
|
||
|
> "INSULT": "a disrespectful or scornfully abusive remark or act."
|
||
|
> }
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||
|
| `label_definitions` | Dictionary of label definitions. Included in the prompt, if set. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`textcat.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.jinja). ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
|
||
|
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
|
||
|
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```json
|
||
|
[
|
||
|
{
|
||
|
"text": "You look great!",
|
||
|
"answer": "Compliment"
|
||
|
},
|
||
|
{
|
||
|
"text": "You are not very clever at all.",
|
||
|
"answer": "Insult"
|
||
|
}
|
||
|
]
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.TextCat.v3"
|
||
|
labels = ["COMPLIMENT", "INSULT"]
|
||
|
label_definitions = {
|
||
|
"COMPLIMENT": "a polite expression of praise or admiration.",
|
||
|
"INSULT": "a disrespectful or scornfully abusive remark or act."
|
||
|
}
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "textcat_examples.json"
|
||
|
```
|
||
|
|
||
|
#### spacy.TextCat.v2 {id="textcat-v2"}
|
||
|
|
||
|
Version 2 of the built-in TextCat task supports both zero-shot and few-shot
|
||
|
prompting and includes an improved prompt template.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.TextCat.v2"
|
||
|
> labels = ["COMPLIMENT", "INSULT"]
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`textcat.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/textcat.jinja). ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Defaults to `False`. ~~bool~~ |
|
||
|
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Defaults to `True`. ~~bool~~ |
|
||
|
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```json
|
||
|
[
|
||
|
{
|
||
|
"text": "You look great!",
|
||
|
"answer": "Compliment"
|
||
|
},
|
||
|
{
|
||
|
"text": "You are not very clever at all.",
|
||
|
"answer": "Insult"
|
||
|
}
|
||
|
]
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.TextCat.v2"
|
||
|
labels = ["COMPLIMENT", "INSULT"]
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "textcat_examples.json"
|
||
|
```
|
||
|
|
||
|
#### spacy.TextCat.v1 {id="textcat-v1"}
|
||
|
|
||
|
Version 1 of the built-in TextCat task supports both zero-shot and few-shot
|
||
|
prompting.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.TextCat.v1"
|
||
|
> labels = COMPLIMENT,INSULT
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `labels` | Comma-separated list of labels. ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Deafults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `exclusive_classes` | If set to `True`, only one label per document should be valid. If set to `False`, one document can have multiple labels. Deafults to `False`. ~~bool~~ |
|
||
|
| `allow_none` | When set to `True`, allows the LLM to not return any of the given label. The resulting dict in `doc.cats` will have `0.0` scores for all labels. Deafults to `True`. ~~bool~~ |
|
||
|
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Deafults to `False`. ~~bool~~ |
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```json
|
||
|
[
|
||
|
{
|
||
|
"text": "You look great!",
|
||
|
"answer": "Compliment"
|
||
|
},
|
||
|
{
|
||
|
"text": "You are not very clever at all.",
|
||
|
"answer": "Insult"
|
||
|
}
|
||
|
]
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.TextCat.v2"
|
||
|
labels = COMPLIMENT,INSULT
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "textcat_examples.json"
|
||
|
```
|
||
|
|
||
|
#### spacy.REL.v1 {id="rel-v1"}
|
||
|
|
||
|
The built-in REL task supports both zero-shot and few-shot prompting. It relies
|
||
|
on an upstream NER component for entities extraction.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.REL.v1"
|
||
|
> labels = ["LivesIn", "Visits"]
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `labels` | List of labels or str of comma-separated list of labels. ~~Union[List[str], str]~~ |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [`rel.jinja`](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/rel.jinja). ~~str~~ |
|
||
|
| `label_description` | Dictionary providing a description for each relation label. Defaults to `None`. ~~Optional[Dict[str, str]]~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `normalizer` | Function that normalizes the labels as returned by the LLM. If `None`, falls back to `spacy.LowercaseNormalizer.v1`. Defaults to `None`. ~~Optional[Callable[[str], str]]~~ |
|
||
|
| `verbose` | If set to `True`, warnings will be generated when the LLM returns invalid responses. Defaults to `False`. ~~bool~~ |
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```json
|
||
|
{"text": "Laura bought a house in Boston with her husband Mark.", "ents": [{"start_char": 0, "end_char": 5, "label": "PERSON"}, {"start_char": 24, "end_char": 30, "label": "GPE"}, {"start_char": 48, "end_char": 52, "label": "PERSON"}], "relations": [{"dep": 0, "dest": 1, "relation": "LivesIn"}, {"dep": 2, "dest": 1, "relation": "LivesIn"}]}
|
||
|
{"text": "Michael travelled through South America by bike.", "ents": [{"start_char": 0, "end_char": 7, "label": "PERSON"}, {"start_char": 26, "end_char": 39, "label": "LOC"}], "relations": [{"dep": 0, "dest": 1, "relation": "Visits"}]}
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.REL.v1"
|
||
|
labels = ["LivesIn", "Visits"]
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "rel_examples.jsonl"
|
||
|
```
|
||
|
|
||
|
Note: the REL task relies on pre-extracted entities to make its prediction.
|
||
|
Hence, you'll need to add a component that populates `doc.ents` with recognized
|
||
|
spans to your spaCy pipeline and put it _before_ the REL component.
|
||
|
|
||
|
#### spacy.Lemma.v1 {id="lemma-v1"}
|
||
|
|
||
|
The `Lemma.v1` task lemmatizes the provided text and updates the `lemma_`
|
||
|
attribute in the doc's tokens accordingly.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.Lemma.v1"
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ---------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [lemma.jinja](https://github.com/explosion/spacy-llm/blob/main/spacy_llm/tasks/templates/lemma.jinja). ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
|
||
|
`Lemma.v1` prompts the LLM to lemmatize the passed text and return the
|
||
|
lemmatized version as a list of tokens and their corresponding lemma. E. g. the
|
||
|
text `I'm buying ice cream for my friends` should invoke the response
|
||
|
|
||
|
```
|
||
|
I: I
|
||
|
'm: be
|
||
|
buying: buy
|
||
|
ice: ice
|
||
|
cream: cream
|
||
|
for: for
|
||
|
my: my
|
||
|
friends: friend
|
||
|
.: .
|
||
|
```
|
||
|
|
||
|
If for any given text/doc instance the number of lemmas returned by the LLM
|
||
|
doesn't match the number of tokens from the pipeline's tokenizer, no lemmas are
|
||
|
stored in the corresponding doc's tokens. Otherwise the tokens `.lemma_`
|
||
|
property is updated with the lemma suggested by the LLM.
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```yaml
|
||
|
- text: I'm buying ice cream.
|
||
|
lemmas:
|
||
|
- 'I': 'I'
|
||
|
- "'m": 'be'
|
||
|
- 'buying': 'buy'
|
||
|
- 'ice': 'ice'
|
||
|
- 'cream': 'cream'
|
||
|
- '.': '.'
|
||
|
|
||
|
- text: I've watered the plants.
|
||
|
lemmas:
|
||
|
- 'I': 'I'
|
||
|
- "'ve": 'have'
|
||
|
- 'watered': 'water'
|
||
|
- 'the': 'the'
|
||
|
- 'plants': 'plant'
|
||
|
- '.': '.'
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.Lemma.v1"
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "lemma_examples.yml"
|
||
|
```
|
||
|
|
||
|
#### spacy.Sentiment.v1 {id="sentiment-v1"}
|
||
|
|
||
|
Performs sentiment analysis on provided texts. Scores between 0 and 1 are stored
|
||
|
in `Doc._.sentiment` - the higher, the more positive. Note in cases of parsing
|
||
|
issues (e. g. in case of unexpected LLM responses) the value might be `None`.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.Sentiment.v1"
|
||
|
> examples = null
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ---------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `template` | Custom prompt template to send to LLM model. Default templates for each task are located in the `spacy_llm/tasks/templates` directory. Defaults to [sentiment.jinja](./spacy_llm/tasks/templates/sentiment.jinja). ~~str~~ |
|
||
|
| `examples` | Optional function that generates examples for few-shot learning. Defaults to `None`. ~~Optional[Callable[[], Iterable[Any]]]~~ |
|
||
|
| `field` | Name of extension attribute to store summary in (i. e. the summary will be available in `doc._.{field}`). Defaults to `sentiment`. ~~str~~ |
|
||
|
|
||
|
To perform [few-shot learning](/usage/large-langauge-models#few-shot-prompts),
|
||
|
you can write down a few examples in a separate file, and provide these to be
|
||
|
injected into the prompt to the LLM. The default reader `spacy.FewShotReader.v1`
|
||
|
supports `.yml`, `.yaml`, `.json` and `.jsonl`.
|
||
|
|
||
|
```yaml
|
||
|
- text: 'This is horrifying.'
|
||
|
score: 0
|
||
|
- text: 'This is underwhelming.'
|
||
|
score: 0.25
|
||
|
- text: 'This is ok.'
|
||
|
score: 0.5
|
||
|
- text: "I'm looking forward to this!"
|
||
|
score: 1.0
|
||
|
```
|
||
|
|
||
|
```ini
|
||
|
[components.llm.task]
|
||
|
@llm_tasks = "spacy.Sentiment.v1"
|
||
|
[components.llm.task.examples]
|
||
|
@misc = "spacy.FewShotReader.v1"
|
||
|
path = "sentiment_examples.yml"
|
||
|
```
|
||
|
|
||
|
#### spacy.NoOp.v1 {id="noop-v1"}
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task]
|
||
|
> @llm_tasks = "spacy.NoOp.v1"
|
||
|
> ```
|
||
|
|
||
|
This task is only useful for testing - it tells the LLM to do nothing, and does
|
||
|
not set any fields on the `docs`.
|
||
|
|
||
|
### Models {id="models"}
|
||
|
|
||
|
A _model_ defines which LLM model to query, and how to query it. It can be a
|
||
|
simple function taking a collection of prompts (consistent with the output type
|
||
|
of `task.generate_prompts()`) and returning a collection of responses
|
||
|
(consistent with the expected input of `parse_responses`). Generally speaking,
|
||
|
it's a function of type `Callable[[Iterable[Any]], Iterable[Any]]`, but specific
|
||
|
implementations can have other signatures, like
|
||
|
`Callable[[Iterable[str]], Iterable[str]]`.
|
||
|
|
||
|
#### API Keys {id="api-keys"}
|
||
|
|
||
|
Note that when using hosted services, you have to ensure that the proper API
|
||
|
keys are set as environment variables as described by the corresponding
|
||
|
provider's documentation.
|
||
|
|
||
|
E. g. when using OpenAI, you have to get an API key from openai.com, and ensure
|
||
|
that the keys are set as environmental variables:
|
||
|
|
||
|
```shell
|
||
|
export OPENAI_API_KEY="sk-..."
|
||
|
export OPENAI_API_ORG="org-..."
|
||
|
```
|
||
|
|
||
|
For Cohere it's
|
||
|
|
||
|
```shell
|
||
|
export CO_API_KEY="..."
|
||
|
```
|
||
|
|
||
|
and for Anthropic
|
||
|
|
||
|
```shell
|
||
|
export ANTHROPIC_API_KEY="..."
|
||
|
```
|
||
|
|
||
|
#### spacy.GPT-4.v1 {id="gpt-4"}
|
||
|
|
||
|
OpenAI's `gpt-4` model family.
|
||
|
|
||
|
> #### Example config:
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.GPT-4.v1"
|
||
|
> name = "gpt-4"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"gpt-4"`. ~~Literal["gpt-4", "gpt-4-0314", "gpt-4-32k", "gpt-4-32k-0314"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.GPT-3-5.v1 {id="gpt-3-5"}
|
||
|
|
||
|
OpenAI's `gpt-3-5` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.GPT-3-5.v1"
|
||
|
> name = "gpt-3.5-turbo"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"gpt-3.5-turbo"`. ~~Literal["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-0613-16k"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Text-Davinci.v1 {id="text-davinci"}
|
||
|
|
||
|
OpenAI's `text-davinci` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Text-Davinci.v1"
|
||
|
> name = "text-davinci-003"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"text-davinci-003"`. ~~Literal["text-davinci-002", "text-davinci-003"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Code-Davinci.v1 {id="code-davinci"}
|
||
|
|
||
|
OpenAI's `code-davinci` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Code-Davinci.v1"
|
||
|
> name = "code-davinci-002"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"code-davinci-002"`. ~~Literal["code-davinci-002"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Text-Curie.v1 {id="text-curie"}
|
||
|
|
||
|
OpenAI's `text-curie` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Text-Curie.v1"
|
||
|
> name = "text-curie-001"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"text-curie-001"`. ~~Literal["text-curie-001"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Text-Babbage.v1 {id="text-babbage"}
|
||
|
|
||
|
OpenAI's `text-babbage` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Text-Babbage.v1"
|
||
|
> name = "text-babbage-001"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"text-babbage-001"`. ~~Literal["text-babbage-001"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Text-Ada.v1 {id="text-ada"}
|
||
|
|
||
|
OpenAI's `text-ada` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Text-Ada.v1"
|
||
|
> name = "text-ada-001"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"text-ada-001"`. ~~Literal["text-ada-001"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Davinci.v1 {id="davinci"}
|
||
|
|
||
|
OpenAI's `davinci` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Davinci.v1 "
|
||
|
> name = "davinci"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"davinci"`. ~~Literal["davinci"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Curie.v1 {id="curie"}
|
||
|
|
||
|
OpenAI's `curie` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Curie.v1 "
|
||
|
> name = "curie"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"curie"`. ~~Literal["curie"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Babbage.v1 {id="babbage"}
|
||
|
|
||
|
OpenAI's `babbage` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Babbage.v1 "
|
||
|
> name = "babbage"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"babbage"`. ~~Literal["babbage"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Ada.v1 {id="ada"}
|
||
|
|
||
|
OpenAI's `ada` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Ada.v1 "
|
||
|
> name = "ada"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"ada"`. ~~Literal["ada"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Command.v1 {id="command"}
|
||
|
|
||
|
Cohere's `command` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Command.v1 "
|
||
|
> name = "command"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"command"`. ~~Literal["command", "command-light", "command-light-nightly", "command-nightly"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Claude-2.v1 {id="claude-2"}
|
||
|
|
||
|
Anthropic's `claude-2` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Claude-2.v1 "
|
||
|
> name = "claude-2"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"claude-2"`. ~~Literal["claude-2", "claude-2-100k"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Claude-1.v1 {id="claude-1"}
|
||
|
|
||
|
Anthropic's `claude-1` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Claude-1.v1 "
|
||
|
> name = "claude-1"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"claude-1"`. ~~Literal["claude-1", "claude-1-100k"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Claude-instant-1.v1 {id="claude-instant-1"}
|
||
|
|
||
|
Anthropic's `claude-instant-1` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Claude-instant-1.v1 "
|
||
|
> name = "claude-instant-1"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"claude-instant-1"`. ~~Literal["claude-instant-1", "claude-instant-1-100k"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Claude-instant-1-1.v1 {id="claude-instant-1-1"}
|
||
|
|
||
|
Anthropic's `claude-instant-1.1` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Claude-instant-1-1.v1 "
|
||
|
> name = "claude-instant-1.1"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"claude-instant-1.1"`. ~~Literal["claude-instant-1.1", "claude-instant-1.1-100k"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Claude-1-0.v1 {id="claude-1-0"}
|
||
|
|
||
|
Anthropic's `claude-1.0` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Claude-1-0.v1 "
|
||
|
> name = "claude-1.0"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"claude-1.0"`. ~~Literal["claude-1.0"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Claude-1-2.v1 {id="claude-1-2"}
|
||
|
|
||
|
Anthropic's `claude-1.2` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Claude-1-2.v1 "
|
||
|
> name = "claude-1.2"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"claude-1.2"`. ~~Literal["claude-1.2"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Claude-1-3.v1 {id="claude-1-3"}
|
||
|
|
||
|
Anthropic's `claude-1.3` model family.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Claude-1-3.v1 "
|
||
|
> name = "claude-1.3"
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ----------- | ------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | Model name, i. e. any supported variant for this particular model. Defaults to `"claude-1.3"`. ~~Literal["claude-1.3", "claude-1.3-100k"]~~ |
|
||
|
| `config` | Further configuration passed on to the model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `strict` | If `True`, raises an error if the LLM API returns a malformed response. Otherwise, return the error responses as is. Defaults to `True`. ~~bool~~ |
|
||
|
| `max_tries` | Max. number of tries for API request. Defaults to `3`. ~~int~~ |
|
||
|
| `timeout` | Timeout for API request in seconds. Defaults to `30`. ~~int~~ |
|
||
|
|
||
|
#### spacy.Dolly.v1 {id="dolly"}
|
||
|
|
||
|
To use this model, ideally you have a GPU enabled and have installed
|
||
|
`transformers`, `torch` and CUDA in your virtual environment. This allows you to
|
||
|
have the setting `device=cuda:0` in your config, which ensures that the model is
|
||
|
loaded entirely on the GPU (and fails otherwise).
|
||
|
|
||
|
You can do so with
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "spacy-llm[transformers]" "transformers[sentencepiece]"
|
||
|
```
|
||
|
|
||
|
If you don't have access to a GPU, you can install `accelerate` and
|
||
|
set`device_map=auto` instead, but be aware that this may result in some layers
|
||
|
getting distributed to the CPU or even the hard drive, which may ultimately
|
||
|
result in extremely slow queries.
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "accelerate>=0.16.0,<1.0"
|
||
|
```
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Dolly.v1"
|
||
|
> name = "dolly-v2-3b"
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | The name of a Dolly model that is supported (e. g. "dolly-v2-3b" or "dolly-v2-12b"). ~~Literal["dolly-v2-3b", "dolly-v2-7b", "dolly-v2-12b"]~~ |
|
||
|
| `config_init` | Further configuration passed on to the construction of the model with `transformers.pipeline()`. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
| `config_run` | Further configuration used during model inference. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
|
||
|
Supported models (see the
|
||
|
[Databricks models page](https://huggingface.co/databricks) on Hugging Face for
|
||
|
details):
|
||
|
|
||
|
- `"databricks/dolly-v2-3b"`
|
||
|
- `"databricks/dolly-v2-7b"`
|
||
|
- `"databricks/dolly-v2-12b"`
|
||
|
|
||
|
Note that Hugging Face will download this model the first time you use it - you
|
||
|
can
|
||
|
[define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)
|
||
|
by setting the environmental variable `HF_HOME`.
|
||
|
|
||
|
#### spacy.Llama2.v1 {id="llama2"}
|
||
|
|
||
|
To use this model, ideally you have a GPU enabled and have installed
|
||
|
`transformers`, `torch` and CUDA in your virtual environment. This allows you to
|
||
|
have the setting `device=cuda:0` in your config, which ensures that the model is
|
||
|
loaded entirely on the GPU (and fails otherwise).
|
||
|
|
||
|
You can do so with
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "spacy-llm[transformers]" "transformers[sentencepiece]"
|
||
|
```
|
||
|
|
||
|
If you don't have access to a GPU, you can install `accelerate` and
|
||
|
set`device_map=auto` instead, but be aware that this may result in some layers
|
||
|
getting distributed to the CPU or even the hard drive, which may ultimately
|
||
|
result in extremely slow queries.
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "accelerate>=0.16.0,<1.0"
|
||
|
```
|
||
|
|
||
|
Note that the chat models variants of Llama 2 are currently not supported. This
|
||
|
is because they need a particular prompting setup and don't add any discernible
|
||
|
benefits in the use case of `spacy-llm` (i. e. no interactive chat) compared the
|
||
|
completion model variants.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Llama2.v1"
|
||
|
> name = "llama2-7b-hf"
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `name` | The name of a Llama 2 model variant that is supported. Defaults to `"Llama-2-7b-hf"`. ~~Literal["Llama-2-7b-hf", "Llama-2-13b-hf", "Llama-2-70b-hf"]~~ |
|
||
|
| `config_init` | Further configuration passed on to the construction of the model with `transformers.pipeline()`. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
| `config_run` | Further configuration used during model inference. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
|
||
|
Note that Hugging Face will download this model the first time you use it - you
|
||
|
can
|
||
|
[define the cache directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)
|
||
|
by setting the environmental variable `HF_HOME`.
|
||
|
|
||
|
#### spacy.Falcon.v1 {id="falcon"}
|
||
|
|
||
|
To use this model, ideally you have a GPU enabled and have installed
|
||
|
`transformers`, `torch` and CUDA in your virtual environment. This allows you to
|
||
|
have the setting `device=cuda:0` in your config, which ensures that the model is
|
||
|
loaded entirely on the GPU (and fails otherwise).
|
||
|
|
||
|
You can do so with
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "spacy-llm[transformers]" "transformers[sentencepiece]"
|
||
|
```
|
||
|
|
||
|
If you don't have access to a GPU, you can install `accelerate` and
|
||
|
set`device_map=auto` instead, but be aware that this may result in some layers
|
||
|
getting distributed to the CPU or even the hard drive, which may ultimately
|
||
|
result in extremely slow queries.
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "accelerate>=0.16.0,<1.0"
|
||
|
```
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.Falcon.v1"
|
||
|
> name = "falcon-7b"
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `name` | The name of a Falcon model variant that is supported. Defaults to `"7b-instruct"`. ~~Literal["falcon-rw-1b", "falcon-7b", "falcon-7b-instruct", "falcon-40b-instruct"]~~ |
|
||
|
| `config_init` | Further configuration passed on to the construction of the model with `transformers.pipeline()`. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
| `config_run` | Further configuration used during model inference. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
|
||
|
Note that Hugging Face will download this model the first time you use it - you
|
||
|
can
|
||
|
[define the cache directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)
|
||
|
by setting the environmental variable `HF_HOME`.
|
||
|
|
||
|
#### spacy.StableLM.v1 {id="stablelm"}
|
||
|
|
||
|
To use this model, ideally you have a GPU enabled and have installed
|
||
|
`transformers`, `torch` and CUDA in your virtual environment.
|
||
|
|
||
|
You can do so with
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "spacy-llm[transformers]" "transformers[sentencepiece]"
|
||
|
```
|
||
|
|
||
|
If you don't have access to a GPU, you can install `accelerate` and
|
||
|
set`device_map=auto` instead, but be aware that this may result in some layers
|
||
|
getting distributed to the CPU or even the hard drive, which may ultimately
|
||
|
result in extremely slow queries.
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "accelerate>=0.16.0,<1.0"
|
||
|
```
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.StableLM.v1"
|
||
|
> name = "stablelm-tuned-alpha-7b"
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | The name of a StableLM model that is supported (e. g. "stablelm-tuned-alpha-7b"). ~~Literal["stablelm-base-alpha-3b", "stablelm-base-alpha-7b", "stablelm-tuned-alpha-3b", "stablelm-tuned-alpha-7b"]~~ |
|
||
|
| `config_init` | Further configuration passed on to the construction of the model with `transformers.AutoModelForCausalLM.from_pretrained()`. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
| `config_run` | Further configuration used during model inference. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
|
||
|
See the
|
||
|
[Stability AI StableLM GitHub repo](https://github.com/Stability-AI/StableLM/#stablelm-alpha)
|
||
|
for details.
|
||
|
|
||
|
Note that Hugging Face will download this model the first time you use it - you
|
||
|
can
|
||
|
[define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)
|
||
|
by setting the environmental variable `HF_HOME`.
|
||
|
|
||
|
#### spacy.OpenLLaMA.v1 {id="openllama"}
|
||
|
|
||
|
To use this model, ideally you have a GPU enabled and have installed
|
||
|
|
||
|
- `transformers[sentencepiece]`
|
||
|
- `torch`
|
||
|
- CUDA in your virtual environment.
|
||
|
|
||
|
You can do so with
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "spacy-llm[transformers]" "transformers[sentencepiece]"
|
||
|
```
|
||
|
|
||
|
If you don't have access to a GPU, you can install `accelerate` and
|
||
|
set`device_map=auto` instead, but be aware that this may result in some layers
|
||
|
getting distributed to the CPU or even the hard drive, which may ultimately
|
||
|
result in extremely slow queries.
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "accelerate>=0.16.0,<1.0"
|
||
|
```
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "spacy.OpenLLaMA.v1"
|
||
|
> name = "open_llama_3b"
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | The name of a OpenLLaMA model that is supported. ~~Literal["open_llama_3b", "open_llama_7b", "open_llama_7b_v2", "open_llama_13b"]~~ |
|
||
|
| `config_init` | Further configuration passed on to the construction of the model with `transformers.AutoModelForCausalLM.from_pretrained()`. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
| `config_run` | Further configuration used during model inference. Defaults to `{}`. ~~Dict[str, Any]~~ |
|
||
|
|
||
|
See the
|
||
|
[OpenLM Research OpenLLaMA GitHub repo](https://github.com/openlm-research/open_llama)
|
||
|
for details.
|
||
|
|
||
|
Note that Hugging Face will download this model the first time you use it - you
|
||
|
can
|
||
|
[define the cached directory](https://huggingface.co/docs/huggingface_hub/main/en/guides/manage-cache)
|
||
|
by setting the environmental variable `HF_HOME`.
|
||
|
|
||
|
#### LangChain models {id="langchain-models"}
|
||
|
|
||
|
To use [LangChain](https://github.com/hwchase17/langchain) for the API retrieval
|
||
|
part, make sure you have installed it first:
|
||
|
|
||
|
```shell
|
||
|
python -m pip install "langchain==0.0.191"
|
||
|
# Or install with spacy-llm directly
|
||
|
python -m pip install "spacy-llm[extras]"
|
||
|
```
|
||
|
|
||
|
Note that LangChain currently only supports Python 3.9 and beyond.
|
||
|
|
||
|
LangChain models in `spacy-llm` work slightly differently. `langchain`'s models
|
||
|
are parsed automatically, each LLM class in `langchain` has one entry in
|
||
|
`spacy-llm`'s registry. As `langchain`'s design has one class per API and not
|
||
|
per model, this results in registry entries like `langchain.OpenAI.v1` - i. e.
|
||
|
there is one registry entry per API and not per model (family), as for the REST-
|
||
|
and HuggingFace-based entries.
|
||
|
|
||
|
The name of the model to be used has to be passed in via the `name` attribute.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.model]
|
||
|
> @llm_models = "langchain.OpenAI.v1"
|
||
|
> name = "gpt-3.5-turbo"
|
||
|
> query = {"@llm_queries": "spacy.CallLangChain.v1"}
|
||
|
> config = {"temperature": 0.3}
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| -------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `name` | The name of a mdodel supported by LangChain for this API. ~~str~~ |
|
||
|
| `config` | Configuration passed on to the LangChain model. Defaults to `{}`. ~~Dict[Any, Any]~~ |
|
||
|
| `query` | Function that executes the prompts. If `None`, defaults to `spacy.CallLangChain.v1`. ~~Optional[Callable[["langchain.llms.BaseLLM", Iterable[Any]], Iterable[Any]]]~~ |
|
||
|
|
||
|
The default `query` (`spacy.CallLangChain.v1`) executes the prompts by running
|
||
|
`model(text)` for each given textual prompt.
|
||
|
|
||
|
### Cache {id="cache"}
|
||
|
|
||
|
Interacting with LLMs, either through an external API or a local instance, is
|
||
|
costly. Since developing an NLP pipeline generally means a lot of exploration
|
||
|
and prototyping, `spacy-llm` implements a built-in cache to avoid reprocessing
|
||
|
the same documents at each run that keeps batches of documents stored on disk.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.cache]
|
||
|
> @llm_misc = "spacy.BatchCache.v1"
|
||
|
> path = "path/to/cache"
|
||
|
> batch_size = 64
|
||
|
> max_batches_in_mem = 4
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||
|
| `path` | Cache directory. If `None`, no caching is performed, and this component will act as a NoOp. Defaults to `None`. ~~Optional[Union[str, Path]]~~ |
|
||
|
| `batch_size` | Number of docs in one batch (file). Once a batch is full, it will be peristed to disk. Defaults to 64. ~~int~~ |
|
||
|
| `max_batches_in_mem` | Max. number of batches to hold in memory. Allows you to limit the effect on your memory if you're handling a lot of docs. Defaults to 4. ~~int~~ |
|
||
|
|
||
|
When retrieving a document, the `BatchCache` will first figure out what batch
|
||
|
the document belongs to. If the batch isn't in memory it will try to load the
|
||
|
batch from disk and then move it into memory.
|
||
|
|
||
|
Note that since the cache is generated by a registered function, you can also
|
||
|
provide your own registered function returning your own cache implementation. If
|
||
|
you wish to do so, ensure that your cache object adheres to the `Protocol`
|
||
|
defined in `spacy_llm.ty.Cache`.
|
||
|
|
||
|
### Various functions {id="various-functions"}
|
||
|
|
||
|
#### spacy.FewShotReader.v1 {id="fewshotreader-v1"}
|
||
|
|
||
|
This function is registered in spaCy's `misc` registry, and reads in examples
|
||
|
from a `.yml`, `.yaml`, `.json` or `.jsonl` file. It uses
|
||
|
[`srsly`](https://github.com/explosion/srsly) to read in these files and parses
|
||
|
them depending on the file extension.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task.examples]
|
||
|
> @misc = "spacy.FewShotReader.v1"
|
||
|
> path = "ner_examples.yml"
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| -------- | ----------------------------------------------------------------------------------------------- |
|
||
|
| `path` | Path to an examples file with suffix `.yml`, `.yaml`, `.json` or `.jsonl`. ~~Union[str, Path]~~ |
|
||
|
|
||
|
#### spacy.FileReader.v1 {id="filereader-v1"}
|
||
|
|
||
|
This function is registered in spaCy's `misc` registry, and reads a file
|
||
|
provided to the `path` to return a `str` representation of its contents. This
|
||
|
function is typically used to read
|
||
|
[Jinja](https://jinja.palletsprojects.com/en/3.1.x/) files containing the prompt
|
||
|
template.
|
||
|
|
||
|
> #### Example config
|
||
|
>
|
||
|
> ```ini
|
||
|
> [components.llm.task.template]
|
||
|
> @misc = "spacy.FileReader.v1"
|
||
|
> path = "ner_template.jinja2"
|
||
|
> ```
|
||
|
|
||
|
| Argument | Description |
|
||
|
| -------- | ------------------------------------------------- |
|
||
|
| `path` | Path to the file to be read. ~~Union[str, Path]~~ |
|
||
|
|
||
|
#### Normalizer functions {id="normalizer-functions"}
|
||
|
|
||
|
These functions provide simple normalizations for string comparisons, e.g.
|
||
|
between a list of specified labels and a label given in the raw text of the LLM
|
||
|
response. They are registered in spaCy's `misc` registry and have the signature
|
||
|
`Callable[[str], str]`.
|
||
|
|
||
|
- `spacy.StripNormalizer.v1`: only apply `text.strip()`
|
||
|
- `spacy.LowercaseNormalizer.v1`: applies `text.strip().lower()` to compare
|
||
|
strings in a case-insensitive way.
|