2020-07-22 14:42:59 +03:00
|
|
|
# cython: infer_types=True, profile=True, binding=True
|
|
|
|
import numpy
|
|
|
|
import srsly
|
|
|
|
|
|
|
|
from thinc.api import Model, set_dropout_rate, SequenceCategoricalCrossentropy, Config
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
from ..tokens.doc cimport Doc
|
|
|
|
from ..morphology cimport Morphology
|
|
|
|
from ..vocab cimport Vocab
|
|
|
|
|
|
|
|
from .pipe import Pipe, deserialize_config
|
|
|
|
from ..language import Language
|
|
|
|
from ..attrs import POS, ID
|
|
|
|
from ..parts_of_speech import X
|
|
|
|
from ..errors import Errors, TempErrors, Warnings
|
Refactor the Scorer to improve flexibility (#5731)
* Refactor the Scorer to improve flexibility
Refactor the `Scorer` to improve flexibility for arbitrary pipeline
components.
* Individual pipeline components provide their own `evaluate` methods
that score a list of `Example`s and return a dictionary of scores
* `Scorer` is initialized either:
* with a provided pipeline containing components to be scored
* with a default pipeline containing the built-in statistical
components (senter, tagger, morphologizer, parser, ner)
* `Scorer.score` evaluates a list of `Example`s and returns a dictionary
of scores referring to the scores provided by the components in the
pipeline
Significant differences:
* `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc`
and the new `morph_acc`, `pos_acc`, and `lemma_acc`
* Scoring is no longer cumulative: `Scorer.score` scores a list of
examples rather than a single example and does not retain any state
about previously scored examples
* PRF values in the returned scores are no longer multiplied by 100
* Add kwargs to Morphologizer.evaluate
* Create generalized scoring methods in Scorer
* Generalized static scoring methods are added to `Scorer`
* Methods require an attribute (either on Token or Doc) that is
used to key the returned scores
Naming differences:
* `uas`, `las`, and `las_per_type` in the scores dict are renamed to
`dep_uas`, `dep_las`, and `dep_las_per_type`
Scoring differences:
* `Doc.sents` is now scored as spans rather than on sentence-initial
token positions so that `Doc.sents` and `Doc.ents` can be scored with
the same method (this lowers scores since a single incorrect sentence
start results in two incorrect spans)
* Simplify / extend hasattr check for eval method
* Add hasattr check to tokenizer scoring
* Simplify to hasattr check for component scoring
* Reset Example alignment if docs are set
Reset the Example alignment if either doc is set in case the
tokenization has changed.
* Add PRF tokenization scoring for tokens as spans
Add PRF scores for tokens as character spans. The scores are:
* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for (token.idx, token.idx + len(token))
* Add docstring to Scorer.score_tokenization
* Rename component.evaluate() to component.score()
* Update Scorer API docs
* Update scoring for positive_label in textcat
* Fix TextCategorizer.score kwargs
* Update Language.evaluate docs
* Update score names in default config
2020-07-25 13:53:02 +03:00
|
|
|
from ..scorer import Scorer
|
2020-07-22 14:42:59 +03:00
|
|
|
from .. import util
|
|
|
|
|
|
|
|
|
|
|
|
default_model_config = """
|
|
|
|
[model]
|
|
|
|
@architectures = "spacy.Tagger.v1"
|
|
|
|
|
|
|
|
[model.tok2vec]
|
|
|
|
@architectures = "spacy.HashEmbedCNN.v1"
|
|
|
|
pretrained_vectors = null
|
|
|
|
width = 96
|
|
|
|
depth = 4
|
|
|
|
embed_size = 2000
|
|
|
|
window_size = 1
|
|
|
|
maxout_pieces = 3
|
|
|
|
subword_features = true
|
|
|
|
dropout = null
|
|
|
|
"""
|
|
|
|
DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
|
|
|
|
|
|
|
|
|
|
|
|
@Language.factory(
|
|
|
|
"tagger",
|
|
|
|
assigns=["token.tag"],
|
|
|
|
default_config={"model": DEFAULT_TAGGER_MODEL, "set_morphology": False}
|
|
|
|
)
|
|
|
|
def make_tagger(nlp: Language, name: str, model: Model, set_morphology: bool):
|
|
|
|
return Tagger(nlp.vocab, model, name, set_morphology=set_morphology)
|
|
|
|
|
|
|
|
|
|
|
|
class Tagger(Pipe):
|
|
|
|
"""Pipeline component for part-of-speech tagging.
|
|
|
|
|
|
|
|
DOCS: https://spacy.io/api/tagger
|
|
|
|
"""
|
|
|
|
def __init__(self, vocab, model, name="tagger", *, set_morphology=False):
|
|
|
|
self.vocab = vocab
|
|
|
|
self.model = model
|
|
|
|
self.name = name
|
|
|
|
self._rehearsal_model = None
|
|
|
|
cfg = {"set_morphology": set_morphology}
|
|
|
|
self.cfg = dict(sorted(cfg.items()))
|
|
|
|
|
|
|
|
@property
|
|
|
|
def labels(self):
|
|
|
|
return tuple(self.vocab.morphology.tag_names)
|
|
|
|
|
|
|
|
def __call__(self, doc):
|
|
|
|
tags = self.predict([doc])
|
|
|
|
self.set_annotations([doc], tags)
|
|
|
|
return doc
|
|
|
|
|
|
|
|
def pipe(self, stream, batch_size=128):
|
|
|
|
for docs in util.minibatch(stream, size=batch_size):
|
|
|
|
tag_ids = self.predict(docs)
|
|
|
|
self.set_annotations(docs, tag_ids)
|
|
|
|
yield from docs
|
|
|
|
|
|
|
|
def predict(self, docs):
|
|
|
|
if not any(len(doc) for doc in docs):
|
|
|
|
# Handle cases where there are no tokens in any docs.
|
|
|
|
n_labels = len(self.labels)
|
|
|
|
guesses = [self.model.ops.alloc((0, n_labels)) for doc in docs]
|
|
|
|
assert len(guesses) == len(docs)
|
|
|
|
return guesses
|
|
|
|
scores = self.model.predict(docs)
|
|
|
|
assert len(scores) == len(docs), (len(scores), len(docs))
|
|
|
|
guesses = self._scores2guesses(scores)
|
|
|
|
assert len(guesses) == len(docs)
|
|
|
|
return guesses
|
|
|
|
|
|
|
|
def _scores2guesses(self, scores):
|
|
|
|
guesses = []
|
|
|
|
for doc_scores in scores:
|
|
|
|
doc_guesses = doc_scores.argmax(axis=1)
|
|
|
|
if not isinstance(doc_guesses, numpy.ndarray):
|
|
|
|
doc_guesses = doc_guesses.get()
|
|
|
|
guesses.append(doc_guesses)
|
|
|
|
return guesses
|
|
|
|
|
|
|
|
def set_annotations(self, docs, batch_tag_ids):
|
|
|
|
if isinstance(docs, Doc):
|
|
|
|
docs = [docs]
|
|
|
|
cdef Doc doc
|
|
|
|
cdef int idx = 0
|
|
|
|
cdef Vocab vocab = self.vocab
|
|
|
|
assign_morphology = self.cfg.get("set_morphology", True)
|
|
|
|
for i, doc in enumerate(docs):
|
|
|
|
doc_tag_ids = batch_tag_ids[i]
|
|
|
|
if hasattr(doc_tag_ids, "get"):
|
|
|
|
doc_tag_ids = doc_tag_ids.get()
|
|
|
|
for j, tag_id in enumerate(doc_tag_ids):
|
|
|
|
# Don't clobber preset POS tags
|
|
|
|
if doc.c[j].tag == 0:
|
|
|
|
if doc.c[j].pos == 0 and assign_morphology:
|
|
|
|
# Don't clobber preset lemmas
|
|
|
|
lemma = doc.c[j].lemma
|
|
|
|
vocab.morphology.assign_tag_id(&doc.c[j], tag_id)
|
|
|
|
if lemma != 0 and lemma != doc.c[j].lex.orth:
|
|
|
|
doc.c[j].lemma = lemma
|
|
|
|
else:
|
|
|
|
doc.c[j].tag = self.vocab.strings[self.labels[tag_id]]
|
|
|
|
idx += 1
|
|
|
|
doc.is_tagged = True
|
|
|
|
|
|
|
|
def update(self, examples, *, drop=0., sgd=None, losses=None, set_annotations=False):
|
|
|
|
if losses is None:
|
|
|
|
losses = {}
|
|
|
|
losses.setdefault(self.name, 0.0)
|
|
|
|
|
|
|
|
try:
|
|
|
|
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
|
|
|
# Handle cases where there are no tokens in any docs.
|
|
|
|
return
|
|
|
|
except AttributeError:
|
|
|
|
types = set([type(eg) for eg in examples])
|
|
|
|
raise TypeError(Errors.E978.format(name="Tagger", method="update", types=types))
|
|
|
|
set_dropout_rate(self.model, drop)
|
|
|
|
tag_scores, bp_tag_scores = self.model.begin_update(
|
|
|
|
[eg.predicted for eg in examples])
|
|
|
|
for sc in tag_scores:
|
|
|
|
if self.model.ops.xp.isnan(sc.sum()):
|
|
|
|
raise ValueError("nan value in scores")
|
|
|
|
loss, d_tag_scores = self.get_loss(examples, tag_scores)
|
|
|
|
bp_tag_scores(d_tag_scores)
|
|
|
|
if sgd not in (None, False):
|
|
|
|
self.model.finish_update(sgd)
|
|
|
|
|
|
|
|
losses[self.name] += loss
|
|
|
|
if set_annotations:
|
|
|
|
docs = [eg.predicted for eg in examples]
|
|
|
|
self.set_annotations(docs, self._scores2guesses(tag_scores))
|
|
|
|
return losses
|
|
|
|
|
|
|
|
def rehearse(self, examples, drop=0., sgd=None, losses=None):
|
|
|
|
"""Perform a 'rehearsal' update, where we try to match the output of
|
|
|
|
an initial model.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
docs = [eg.predicted for eg in examples]
|
|
|
|
except AttributeError:
|
|
|
|
types = set([type(eg) for eg in examples])
|
|
|
|
raise TypeError(Errors.E978.format(name="Tagger", method="rehearse", types=types))
|
|
|
|
if self._rehearsal_model is None:
|
|
|
|
return
|
|
|
|
if not any(len(doc) for doc in docs):
|
|
|
|
# Handle cases where there are no tokens in any docs.
|
|
|
|
return
|
|
|
|
set_dropout_rate(self.model, drop)
|
|
|
|
guesses, backprop = self.model.begin_update(docs)
|
|
|
|
target = self._rehearsal_model(examples)
|
|
|
|
gradient = guesses - target
|
|
|
|
backprop(gradient)
|
|
|
|
self.model.finish_update(sgd)
|
|
|
|
if losses is not None:
|
|
|
|
losses.setdefault(self.name, 0.0)
|
|
|
|
losses[self.name] += (gradient**2).sum()
|
|
|
|
|
|
|
|
def get_loss(self, examples, scores):
|
|
|
|
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
|
|
|
|
truths = [eg.get_aligned("tag", as_string=True) for eg in examples]
|
|
|
|
d_scores, loss = loss_func(scores, truths)
|
|
|
|
if self.model.ops.xp.isnan(loss):
|
|
|
|
raise ValueError("nan value when computing loss")
|
|
|
|
return float(loss), d_scores
|
|
|
|
|
|
|
|
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
|
|
|
|
lemma_tables = ["lemma_rules", "lemma_index", "lemma_exc", "lemma_lookup"]
|
|
|
|
if not any(table in self.vocab.lookups for table in lemma_tables):
|
|
|
|
warnings.warn(Warnings.W022)
|
2020-07-25 12:51:30 +03:00
|
|
|
lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
|
|
|
|
if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
|
|
|
|
langs = ", ".join(util.LEXEME_NORM_LANGS)
|
|
|
|
warnings.warn(Warnings.W033.format(model="part-of-speech tagger", langs=langs))
|
2020-07-22 14:42:59 +03:00
|
|
|
orig_tag_map = dict(self.vocab.morphology.tag_map)
|
|
|
|
new_tag_map = {}
|
|
|
|
for example in get_examples():
|
|
|
|
try:
|
|
|
|
y = example.y
|
|
|
|
except AttributeError:
|
|
|
|
raise TypeError(Errors.E978.format(name="Tagger", method="begin_training", types=type(example)))
|
|
|
|
for token in y:
|
|
|
|
tag = token.tag_
|
|
|
|
if tag in orig_tag_map:
|
|
|
|
new_tag_map[tag] = orig_tag_map[tag]
|
|
|
|
else:
|
|
|
|
new_tag_map[tag] = {POS: X}
|
|
|
|
|
|
|
|
cdef Vocab vocab = self.vocab
|
|
|
|
if new_tag_map:
|
|
|
|
if "_SP" in orig_tag_map:
|
|
|
|
new_tag_map["_SP"] = orig_tag_map["_SP"]
|
|
|
|
vocab.morphology.load_tag_map(new_tag_map)
|
|
|
|
self.set_output(len(self.labels))
|
|
|
|
doc_sample = [Doc(self.vocab, words=["hello", "world"])]
|
|
|
|
if pipeline is not None:
|
|
|
|
for name, component in pipeline:
|
|
|
|
if component is self:
|
|
|
|
break
|
|
|
|
if hasattr(component, "pipe"):
|
|
|
|
doc_sample = list(component.pipe(doc_sample))
|
|
|
|
else:
|
|
|
|
doc_sample = [component(doc) for doc in doc_sample]
|
|
|
|
self.model.initialize(X=doc_sample)
|
|
|
|
# Get batch of example docs, example outputs to call begin_training().
|
|
|
|
# This lets the model infer shapes.
|
|
|
|
util.link_vectors_to_models(self.vocab)
|
|
|
|
if sgd is None:
|
|
|
|
sgd = self.create_optimizer()
|
|
|
|
return sgd
|
|
|
|
|
|
|
|
def add_label(self, label, values=None):
|
|
|
|
if not isinstance(label, str):
|
|
|
|
raise ValueError(Errors.E187)
|
|
|
|
if label in self.labels:
|
|
|
|
return 0
|
|
|
|
if self.model.has_dim("nO"):
|
|
|
|
# Here's how the model resizing will work, once the
|
|
|
|
# neuron-to-tag mapping is no longer controlled by
|
|
|
|
# the Morphology class, which sorts the tag names.
|
|
|
|
# The sorting makes adding labels difficult.
|
|
|
|
# smaller = self.model._layers[-1]
|
|
|
|
# larger = Softmax(len(self.labels)+1, smaller.nI)
|
|
|
|
# copy_array(larger.W[:smaller.nO], smaller.W)
|
|
|
|
# copy_array(larger.b[:smaller.nO], smaller.b)
|
|
|
|
# self.model._layers[-1] = larger
|
|
|
|
raise ValueError(TempErrors.T003)
|
|
|
|
tag_map = dict(self.vocab.morphology.tag_map)
|
|
|
|
if values is None:
|
|
|
|
values = {POS: "X"}
|
|
|
|
tag_map[label] = values
|
|
|
|
self.vocab.morphology.load_tag_map(tag_map)
|
|
|
|
return 1
|
|
|
|
|
|
|
|
def use_params(self, params):
|
|
|
|
with self.model.use_params(params):
|
|
|
|
yield
|
|
|
|
|
Refactor the Scorer to improve flexibility (#5731)
* Refactor the Scorer to improve flexibility
Refactor the `Scorer` to improve flexibility for arbitrary pipeline
components.
* Individual pipeline components provide their own `evaluate` methods
that score a list of `Example`s and return a dictionary of scores
* `Scorer` is initialized either:
* with a provided pipeline containing components to be scored
* with a default pipeline containing the built-in statistical
components (senter, tagger, morphologizer, parser, ner)
* `Scorer.score` evaluates a list of `Example`s and returns a dictionary
of scores referring to the scores provided by the components in the
pipeline
Significant differences:
* `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc`
and the new `morph_acc`, `pos_acc`, and `lemma_acc`
* Scoring is no longer cumulative: `Scorer.score` scores a list of
examples rather than a single example and does not retain any state
about previously scored examples
* PRF values in the returned scores are no longer multiplied by 100
* Add kwargs to Morphologizer.evaluate
* Create generalized scoring methods in Scorer
* Generalized static scoring methods are added to `Scorer`
* Methods require an attribute (either on Token or Doc) that is
used to key the returned scores
Naming differences:
* `uas`, `las`, and `las_per_type` in the scores dict are renamed to
`dep_uas`, `dep_las`, and `dep_las_per_type`
Scoring differences:
* `Doc.sents` is now scored as spans rather than on sentence-initial
token positions so that `Doc.sents` and `Doc.ents` can be scored with
the same method (this lowers scores since a single incorrect sentence
start results in two incorrect spans)
* Simplify / extend hasattr check for eval method
* Add hasattr check to tokenizer scoring
* Simplify to hasattr check for component scoring
* Reset Example alignment if docs are set
Reset the Example alignment if either doc is set in case the
tokenization has changed.
* Add PRF tokenization scoring for tokens as spans
Add PRF scores for tokens as character spans. The scores are:
* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for (token.idx, token.idx + len(token))
* Add docstring to Scorer.score_tokenization
* Rename component.evaluate() to component.score()
* Update Scorer API docs
* Update scoring for positive_label in textcat
* Fix TextCategorizer.score kwargs
* Update Language.evaluate docs
* Update score names in default config
2020-07-25 13:53:02 +03:00
|
|
|
def score(self, examples, **kwargs):
|
|
|
|
scores = {}
|
|
|
|
scores.update(Scorer.score_token_attr(examples, "tag", **kwargs))
|
|
|
|
scores.update(Scorer.score_token_attr(examples, "pos", **kwargs))
|
|
|
|
scores.update(Scorer.score_token_attr(examples, "lemma", **kwargs))
|
|
|
|
return scores
|
|
|
|
|
2020-07-22 14:42:59 +03:00
|
|
|
def to_bytes(self, exclude=tuple()):
|
|
|
|
serialize = {}
|
|
|
|
serialize["model"] = self.model.to_bytes
|
|
|
|
serialize["vocab"] = self.vocab.to_bytes
|
|
|
|
serialize["cfg"] = lambda: srsly.json_dumps(self.cfg)
|
|
|
|
tag_map = dict(sorted(self.vocab.morphology.tag_map.items()))
|
|
|
|
serialize["tag_map"] = lambda: srsly.msgpack_dumps(tag_map)
|
|
|
|
morph_rules = dict(self.vocab.morphology.exc)
|
|
|
|
serialize["morph_rules"] = lambda: srsly.msgpack_dumps(morph_rules)
|
|
|
|
return util.to_bytes(serialize, exclude)
|
|
|
|
|
|
|
|
def from_bytes(self, bytes_data, exclude=tuple()):
|
|
|
|
def load_model(b):
|
|
|
|
try:
|
|
|
|
self.model.from_bytes(b)
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(Errors.E149)
|
|
|
|
|
|
|
|
def load_tag_map(b):
|
|
|
|
tag_map = srsly.msgpack_loads(b)
|
|
|
|
self.vocab.morphology.load_tag_map(tag_map)
|
|
|
|
|
|
|
|
def load_morph_rules(b):
|
|
|
|
morph_rules = srsly.msgpack_loads(b)
|
|
|
|
self.vocab.morphology.load_morph_exceptions(morph_rules)
|
|
|
|
|
|
|
|
self.vocab.morphology = Morphology(self.vocab.strings, dict(),
|
|
|
|
lemmatizer=self.vocab.morphology.lemmatizer)
|
|
|
|
|
|
|
|
deserialize = {
|
|
|
|
"vocab": lambda b: self.vocab.from_bytes(b),
|
|
|
|
"tag_map": load_tag_map,
|
|
|
|
"morph_rules": load_morph_rules,
|
|
|
|
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
|
|
|
|
"model": lambda b: load_model(b),
|
|
|
|
}
|
|
|
|
util.from_bytes(bytes_data, deserialize, exclude)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def to_disk(self, path, exclude=tuple()):
|
|
|
|
tag_map = dict(sorted(self.vocab.morphology.tag_map.items()))
|
|
|
|
morph_rules = dict(self.vocab.morphology.exc)
|
|
|
|
serialize = {
|
|
|
|
"vocab": lambda p: self.vocab.to_disk(p),
|
|
|
|
"tag_map": lambda p: srsly.write_msgpack(p, tag_map),
|
|
|
|
"morph_rules": lambda p: srsly.write_msgpack(p, morph_rules),
|
|
|
|
"model": lambda p: self.model.to_disk(p),
|
|
|
|
"cfg": lambda p: srsly.write_json(p, self.cfg),
|
|
|
|
}
|
|
|
|
util.to_disk(path, serialize, exclude)
|
|
|
|
|
|
|
|
def from_disk(self, path, exclude=tuple()):
|
|
|
|
def load_model(p):
|
|
|
|
with p.open("rb") as file_:
|
|
|
|
try:
|
|
|
|
self.model.from_bytes(file_.read())
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(Errors.E149)
|
|
|
|
|
|
|
|
def load_tag_map(p):
|
|
|
|
tag_map = srsly.read_msgpack(p)
|
|
|
|
self.vocab.morphology.load_tag_map(tag_map)
|
|
|
|
|
|
|
|
def load_morph_rules(p):
|
|
|
|
morph_rules = srsly.read_msgpack(p)
|
|
|
|
self.vocab.morphology.load_morph_exceptions(morph_rules)
|
|
|
|
|
|
|
|
self.vocab.morphology = Morphology(self.vocab.strings, dict(),
|
|
|
|
lemmatizer=self.vocab.morphology.lemmatizer)
|
|
|
|
|
|
|
|
deserialize = {
|
|
|
|
"vocab": lambda p: self.vocab.from_disk(p),
|
|
|
|
"cfg": lambda p: self.cfg.update(deserialize_config(p)),
|
|
|
|
"tag_map": load_tag_map,
|
|
|
|
"morph_rules": load_morph_rules,
|
|
|
|
"model": load_model,
|
|
|
|
}
|
|
|
|
util.from_disk(path, deserialize, exclude)
|
|
|
|
return self
|