spaCy/spacy/lang/da/syntax_iterators.py

82 lines
2.2 KiB
Python
Raw Normal View History

# coding: utf8
from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON, VERB, AUX
from ...errors import Errors
def noun_chunks(doclike):
def is_verb_token(tok):
return tok.pos in [VERB, AUX]
def next_token(tok):
try:
return tok.nbor()
except IndexError:
return None
def get_left_bound(doc, root):
left_bound = root
for tok in reversed(list(root.lefts)):
if tok.dep in np_left_deps:
left_bound = tok
return left_bound
def get_right_bound(doc, root):
right_bound = root
for tok in root.rights:
if tok.dep in np_right_deps:
right = get_right_bound(doc, tok)
if list(
filter(
lambda t: is_verb_token(t) or t.dep in stop_deps,
doc[root.i : right.i],
)
):
break
else:
right_bound = right
return right_bound
def get_bounds(doc, root):
return get_left_bound(doc, root), get_right_bound(doc, root)
doc = doclike.doc
if not doc.is_parsed:
raise ValueError(Errors.E029)
if not len(doc):
return
left_labels = [
"det",
"fixed",
"nmod:poss",
"amod",
"flat",
"goeswith",
"nummod",
"appos",
]
right_labels = ["fixed", "nmod:poss", "amod", "flat", "goeswith", "nummod", "appos"]
stop_labels = ["punct"]
np_label = doc.vocab.strings.add("NP")
np_left_deps = [doc.vocab.strings.add(label) for label in left_labels]
np_right_deps = [doc.vocab.strings.add(label) for label in right_labels]
stop_deps = [doc.vocab.strings.add(label) for label in stop_labels]
chunks = []
prev_right = -1
for token in doclike:
if token.pos in [PROPN, NOUN, PRON]:
left, right = get_bounds(doc, token)
if left.i <= prev_right:
continue
yield left.i, right.i + 1, np_label
prev_right = right.i
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}