1
1
mirror of https://github.com/explosion/spaCy.git synced 2025-01-23 15:54:13 +03:00
spaCy/spacy/ml/models/entity_linker.py

49 lines
1.6 KiB
Python
Raw Normal View History

2020-10-12 12:41:27 +03:00
from pathlib import Path
from typing import Optional, Callable, Iterable
Default settings to configurations (#4995) * fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
2020-02-27 20:42:27 +03:00
from thinc.api import chain, clone, list2ragged, reduce_mean, residual
from thinc.api import Model, Maxout, Linear
2020-02-28 13:57:41 +03:00
from ...util import registry
from ...kb import KnowledgeBase, Candidate, get_candidates
from ...vocab import Vocab
Default settings to configurations (#4995) * fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
2020-02-27 20:42:27 +03:00
@registry.architectures.register("spacy.EntityLinker.v1")
2020-07-31 18:02:54 +03:00
def build_nel_encoder(tok2vec: Model, nO: Optional[int] = None) -> Model:
Default settings to configurations (#4995) * fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
2020-02-27 20:42:27 +03:00
with Model.define_operators({">>": chain, "**": clone}):
token_width = tok2vec.get_dim("nO")
output_layer = Linear(nO=nO, nI=token_width)
model = (
tok2vec
>> list2ragged()
>> reduce_mean()
>> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0))
>> output_layer
)
model.set_ref("output_layer", output_layer)
model.set_ref("tok2vec", tok2vec)
return model
2020-09-03 18:31:14 +03:00
@registry.misc.register("spacy.KBFromFile.v1")
2020-10-12 12:41:27 +03:00
def load_kb(kb_path: Path) -> Callable[[Vocab], KnowledgeBase]:
def kb_from_file(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
kb.from_disk(kb_path)
return kb
2020-08-23 22:15:12 +03:00
return kb_from_file
2020-09-03 18:31:14 +03:00
@registry.misc.register("spacy.EmptyKB.v1")
def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
def empty_kb_factory(vocab):
return KnowledgeBase(vocab=vocab, entity_vector_length=entity_vector_length)
2020-08-23 22:15:12 +03:00
return empty_kb_factory
2020-09-03 18:31:14 +03:00
@registry.misc.register("spacy.CandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
return get_candidates