spaCy/spacy/lang/fr/lemmatizer/__init__.py

148 lines
5.0 KiB
Python
Raw Normal View History

Rule-based French Lemmatizer (#2818) <!--- Provide a general summary of your changes in the title. --> ## Description <!--- Use this section to describe your changes. If your changes required testing, include information about the testing environment and the tests you ran. If your test fixes a bug reported in an issue, don't forget to include the issue number. If your PR is still a work in progress, that's totally fine – just include a note to let us know. --> Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class. ### Types of change <!-- What type of change does your PR cover? Is it a bug fix, an enhancement or new feature, or a change to the documentation? --> - Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version. - Add several files containing exhaustive list of words for each part of speech - Add some lemma rules - Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX - Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned - Modify the lemmatize function to check in lookup table as a last resort - Init files are updated so the model can support all the functionalities mentioned above - Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [X] I have submitted the spaCy Contributor Agreement. - [X] I ran the tests, and all new and existing tests passed. - [X] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-10-13 17:38:21 +03:00
# coding: utf8
from __future__ import unicode_literals
from ....symbols import POS, NOUN, VERB, ADJ, ADV, PRON, DET, AUX, PUNCT, ADP
from ....symbols import SCONJ, CCONJ
from ....symbols import VerbForm_inf, VerbForm_none, Number_sing, Degree_pos
class FrenchLemmatizer(object):
"""
French language lemmatizer applies the default rule based lemmatization
procedure with some modifications for better French language support.
The parts of speech 'ADV', 'PRON', 'DET', 'ADP' and 'AUX' are added to use
the rule-based lemmatization. As a last resort, the lemmatizer checks in
the lookup table.
"""
@classmethod
def load(cls, path, index=None, exc=None, rules=None, lookup=None):
return cls(index, exc, rules, lookup)
def __init__(self, index=None, exceptions=None, rules=None, lookup=None):
self.index = index
self.exc = exceptions
self.rules = rules
self.lookup_table = lookup if lookup is not None else {}
def __call__(self, string, univ_pos, morphology=None):
if not self.rules:
return [self.lookup_table.get(string, string)]
if univ_pos in (NOUN, "NOUN", "noun"):
univ_pos = "noun"
elif univ_pos in (VERB, "VERB", "verb"):
univ_pos = "verb"
elif univ_pos in (ADJ, "ADJ", "adj"):
univ_pos = "adj"
elif univ_pos in (ADP, "ADP", "adp"):
univ_pos = "adp"
elif univ_pos in (ADV, "ADV", "adv"):
univ_pos = "adv"
elif univ_pos in (AUX, "AUX", "aux"):
univ_pos = "aux"
elif univ_pos in (CCONJ, "CCONJ", "cconj"):
univ_pos = "cconj"
elif univ_pos in (DET, "DET", "det"):
univ_pos = "det"
elif univ_pos in (PRON, "PRON", "pron"):
univ_pos = "pron"
elif univ_pos in (PUNCT, "PUNCT", "punct"):
univ_pos = "punct"
elif univ_pos in (SCONJ, "SCONJ", "sconj"):
univ_pos = "sconj"
else:
return [self.lookup(string)]
# See Issue #435 for example of where this logic is requied.
if self.is_base_form(univ_pos, morphology):
return list(set([string.lower()]))
lemmas = lemmatize(
string,
self.index.get(univ_pos, {}),
self.exc.get(univ_pos, {}),
self.rules.get(univ_pos, []),
self.lookup_table,
)
return lemmas
def is_base_form(self, univ_pos, morphology=None):
"""
Check whether we're dealing with an uninflected paradigm, so we can
avoid lemmatization entirely.
"""
morphology = {} if morphology is None else morphology
others = [
key
for key in morphology
if key not in (POS, "Number", "POS", "VerbForm", "Tense")
]
if univ_pos == "noun" and morphology.get("Number") == "sing":
return True
elif univ_pos == "verb" and morphology.get("VerbForm") == "inf":
return True
# This maps 'VBP' to base form -- probably just need 'IS_BASE'
# morphology
elif univ_pos == "verb" and (
morphology.get("VerbForm") == "fin"
and morphology.get("Tense") == "pres"
and morphology.get("Number") is None
and not others
):
return True
elif univ_pos == "adj" and morphology.get("Degree") == "pos":
return True
elif VerbForm_inf in morphology:
return True
elif VerbForm_none in morphology:
return True
elif Number_sing in morphology:
return True
elif Degree_pos in morphology:
return True
else:
return False
def noun(self, string, morphology=None):
return self(string, "noun", morphology)
def verb(self, string, morphology=None):
return self(string, "verb", morphology)
def adj(self, string, morphology=None):
return self(string, "adj", morphology)
def punct(self, string, morphology=None):
return self(string, "punct", morphology)
def lookup(self, string):
if string in self.lookup_table:
return self.lookup_table[string][0]
return string
def lemmatize(string, index, exceptions, rules, lookup):
string = string.lower()
forms = []
if string in index:
forms.append(string)
return forms
forms.extend(exceptions.get(string, []))
oov_forms = []
if not forms:
for old, new in rules:
if string.endswith(old):
form = string[: len(string) - len(old)] + new
if not form:
pass
elif form in index or not form.isalpha():
forms.append(form)
else:
oov_forms.append(form)
if not forms:
forms.extend(oov_forms)
if not forms and string in lookup.keys():
forms.append(lookup[string][0])
if not forms:
forms.append(string)
return list(set(forms))