2020-06-02 19:26:21 +03:00
|
|
|
import pytest
|
|
|
|
|
2020-06-02 23:24:57 +03:00
|
|
|
from .util import get_random_doc
|
2020-06-02 19:26:21 +03:00
|
|
|
|
2020-07-27 18:50:12 +03:00
|
|
|
from spacy import util
|
|
|
|
from spacy.util import minibatch_by_words, dot_to_object
|
|
|
|
from thinc.api import Config, Optimizer
|
|
|
|
|
|
|
|
from ..lang.en import English
|
|
|
|
from ..lang.nl import Dutch
|
|
|
|
from ..language import DEFAULT_CONFIG_PATH
|
2020-06-02 19:26:21 +03:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"doc_sizes, expected_batches",
|
|
|
|
[
|
|
|
|
([400, 400, 199], [3]),
|
|
|
|
([400, 400, 199, 3], [4]),
|
2020-06-02 20:47:30 +03:00
|
|
|
([400, 400, 199, 3, 200], [3, 2]),
|
2020-06-02 23:05:08 +03:00
|
|
|
([400, 400, 199, 3, 1], [5]),
|
2020-06-20 15:15:04 +03:00
|
|
|
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
|
2020-06-02 20:47:30 +03:00
|
|
|
([400, 400, 199, 3, 1, 200], [3, 3]),
|
2020-06-02 23:05:08 +03:00
|
|
|
([400, 400, 199, 3, 1, 999], [3, 3]),
|
|
|
|
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
|
|
|
|
([1, 2, 999], [3]),
|
|
|
|
([1, 2, 999, 1], [4]),
|
|
|
|
([1, 200, 999, 1], [2, 2]),
|
|
|
|
([1, 999, 200, 1], [2, 2]),
|
2020-06-02 19:26:21 +03:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_util_minibatch(doc_sizes, expected_batches):
|
2020-06-02 23:24:57 +03:00
|
|
|
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
2020-06-02 23:05:08 +03:00
|
|
|
tol = 0.2
|
|
|
|
batch_size = 1000
|
2020-06-20 15:15:04 +03:00
|
|
|
batches = list(
|
2020-06-26 20:34:12 +03:00
|
|
|
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
|
2020-06-20 15:15:04 +03:00
|
|
|
)
|
2020-06-02 19:26:21 +03:00
|
|
|
assert [len(batch) for batch in batches] == expected_batches
|
2020-06-02 23:05:08 +03:00
|
|
|
|
|
|
|
max_size = batch_size + batch_size * tol
|
|
|
|
for batch in batches:
|
2020-06-26 20:34:12 +03:00
|
|
|
assert sum([len(doc) for doc in batch]) < max_size
|
2020-06-02 23:05:08 +03:00
|
|
|
|
2020-06-02 23:09:37 +03:00
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"doc_sizes, expected_batches",
|
|
|
|
[
|
|
|
|
([400, 4000, 199], [1, 2]),
|
|
|
|
([400, 400, 199, 3000, 200], [1, 4]),
|
|
|
|
([400, 400, 199, 3, 1, 1500], [1, 5]),
|
|
|
|
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
|
|
|
|
([1, 2, 9999], [1, 2]),
|
|
|
|
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_util_minibatch_oversize(doc_sizes, expected_batches):
|
|
|
|
""" Test that oversized documents are returned in their own batch"""
|
2020-06-02 23:24:57 +03:00
|
|
|
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
2020-06-02 23:09:37 +03:00
|
|
|
tol = 0.2
|
|
|
|
batch_size = 1000
|
2020-06-20 15:15:04 +03:00
|
|
|
batches = list(
|
2020-06-26 20:34:12 +03:00
|
|
|
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
|
2020-06-20 15:15:04 +03:00
|
|
|
)
|
2020-06-02 23:09:37 +03:00
|
|
|
assert [len(batch) for batch in batches] == expected_batches
|
2020-07-27 18:50:12 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_util_dot_section():
|
|
|
|
cfg_string = """
|
|
|
|
[nlp]
|
|
|
|
lang = "en"
|
|
|
|
pipeline = ["textcat"]
|
|
|
|
load_vocab_data = false
|
|
|
|
|
|
|
|
[components]
|
|
|
|
|
|
|
|
[components.textcat]
|
|
|
|
factory = "textcat"
|
|
|
|
|
|
|
|
[components.textcat.model]
|
|
|
|
@architectures = "spacy.TextCatBOW.v1"
|
|
|
|
exclusive_classes = true
|
|
|
|
ngram_size = 1
|
|
|
|
no_output_layer = false
|
|
|
|
"""
|
|
|
|
nlp_config = Config().from_str(cfg_string)
|
|
|
|
en_nlp, en_config = util.load_model_from_config(nlp_config, auto_fill=True)
|
|
|
|
|
|
|
|
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
|
|
|
|
default_config["nlp"]["lang"] = "nl"
|
|
|
|
nl_nlp, nl_config = util.load_model_from_config(default_config, auto_fill=True)
|
|
|
|
|
|
|
|
# Test that creation went OK
|
|
|
|
assert isinstance(en_nlp, English)
|
|
|
|
assert isinstance(nl_nlp, Dutch)
|
|
|
|
assert nl_nlp.pipe_names == []
|
|
|
|
assert en_nlp.pipe_names == ["textcat"]
|
|
|
|
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] == False # not exclusive_classes
|
|
|
|
|
|
|
|
# Test that default values got overwritten
|
|
|
|
assert not en_config["nlp"]["load_vocab_data"]
|
|
|
|
assert nl_config["nlp"]["load_vocab_data"] # default value True
|
|
|
|
|
|
|
|
# Test proper functioning of 'dot_to_object'
|
|
|
|
with pytest.raises(KeyError):
|
|
|
|
obj = dot_to_object(en_config, "nlp.pipeline.tagger")
|
|
|
|
with pytest.raises(KeyError):
|
|
|
|
obj = dot_to_object(en_config, "nlp.unknownattribute")
|
|
|
|
assert not dot_to_object(en_config, "nlp.load_vocab_data")
|
|
|
|
assert dot_to_object(nl_config, "nlp.load_vocab_data")
|
|
|
|
assert isinstance(dot_to_object(nl_config, "training.optimizer"), Optimizer)
|