spaCy/spacy/ty.py

85 lines
1.7 KiB
Python
Raw Normal View History

2023-06-26 12:41:03 +03:00
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Protocol,
Sequence,
runtime_checkable,
)
from thinc.api import Model, Optimizer
if TYPE_CHECKING:
from .language import Language
2023-06-26 12:41:03 +03:00
from .training import Example
@runtime_checkable
class TrainableComponent(Protocol):
model: Any
is_trainable: bool
def update(
self,
examples: Iterable["Example"],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None
) -> Dict[str, float]:
...
def finish_update(self, sgd: Optimizer) -> None:
...
@runtime_checkable
class DistillableComponent(Protocol):
is_distillable: bool
def distill(
self,
teacher_pipe: Optional[TrainableComponent],
examples: Iterable["Example"],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None
) -> Dict[str, float]:
...
def finish_update(self, sgd: Optimizer) -> None:
...
@runtime_checkable
class InitializableComponent(Protocol):
def initialize(
self,
get_examples: Callable[[], Iterable["Example"]],
nlp: "Language",
**kwargs: Any
):
...
@runtime_checkable
class ListenedToComponent(Protocol):
model: Any
listeners: Sequence[Model]
listener_map: Dict[str, Sequence[Model]]
listening_components: List[str]
def add_listener(self, listener: Model, component_name: str) -> None:
...
def remove_listener(self, listener: Model, component_name: str) -> bool:
...
def find_listeners(self, component) -> None:
...